• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • Tagged with
  • 9
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Hydrodynamics of Pool-Riffle Sequences with Changing Bedform Length

Obach, Lana M. January 2011 (has links)
Previous research has demonstrated that pool-riffle bedforms play a critical role in channel stability and ecosystem health in many natural gravel-bed channels. Although the bedform length is known to scale with channel width, no experimental research has yet isolated the effect of bedform length on pool-riffle hydrodynamics. To improve the understanding of the hydrodynamics of these bedforms so that they can be better incorporated in restoration practices, flume experiments were conducted testing the flow at seven different bedform lengths. Velocity profiles are measured in a 17 m flume with movable PVC bedforms using ultrasonic velocity profilers (UVPs). Smooth two-dimensional (no sinuosity) bedforms are used in order to isolate the key dynamics in convective acceleration and deceleration. The angle of transition between pool and riffle heights was 7°, so that permanent flow separation did not occur. Parameters calculated from the velocity and turbulence profiles include the Coles’ wake parameter (a measure of the deviation from the log law), shear stress estimated from the velocity profile, shear stress estimated from the Reynolds shear stress, and vertical velocity. From the individual velocity time series, the integral length scale and the integral time scales are also calculated. Overall, the length of riffles and pools exert a fundamental control on the distribution of flow and turbulence within a channel. In the pool, energy is dissipated both through turbulence and as the flow is redistributed to uniform flow conditions. In the riffle, kinetic energy increases as the flow velocity increases, and as the length increases, the flow moves towards a new uniform flow condition. The results start to explain the reasons behind the persistent scaling relation between width and bedform length. It can be concluded that uniform flow conditions exist at the end of the pool when the bedform length ratio is greater than approximately 1:5.0 when the riffle length is held constant, and that uniform flow conditions are no longer observed at the end of the pool when the bedform length ratio exceeds 1:7.0 when the pool length is held constant. Future research should concentrate on extending the results to include three-dimensional pool-riffle configurations, repeating bedform configurations, internal scaling parameters, and sediment transport. Ultimately, as the hydrodynamics of pool-riffle sequences are better understood, better bedform designs can be implemented in restoration projects.
2

The Hydrodynamics of Pool-Riffle Sequences with Changing Bedform Length

Obach, Lana M. January 2011 (has links)
Previous research has demonstrated that pool-riffle bedforms play a critical role in channel stability and ecosystem health in many natural gravel-bed channels. Although the bedform length is known to scale with channel width, no experimental research has yet isolated the effect of bedform length on pool-riffle hydrodynamics. To improve the understanding of the hydrodynamics of these bedforms so that they can be better incorporated in restoration practices, flume experiments were conducted testing the flow at seven different bedform lengths. Velocity profiles are measured in a 17 m flume with movable PVC bedforms using ultrasonic velocity profilers (UVPs). Smooth two-dimensional (no sinuosity) bedforms are used in order to isolate the key dynamics in convective acceleration and deceleration. The angle of transition between pool and riffle heights was 7°, so that permanent flow separation did not occur. Parameters calculated from the velocity and turbulence profiles include the Coles’ wake parameter (a measure of the deviation from the log law), shear stress estimated from the velocity profile, shear stress estimated from the Reynolds shear stress, and vertical velocity. From the individual velocity time series, the integral length scale and the integral time scales are also calculated. Overall, the length of riffles and pools exert a fundamental control on the distribution of flow and turbulence within a channel. In the pool, energy is dissipated both through turbulence and as the flow is redistributed to uniform flow conditions. In the riffle, kinetic energy increases as the flow velocity increases, and as the length increases, the flow moves towards a new uniform flow condition. The results start to explain the reasons behind the persistent scaling relation between width and bedform length. It can be concluded that uniform flow conditions exist at the end of the pool when the bedform length ratio is greater than approximately 1:5.0 when the riffle length is held constant, and that uniform flow conditions are no longer observed at the end of the pool when the bedform length ratio exceeds 1:7.0 when the pool length is held constant. Future research should concentrate on extending the results to include three-dimensional pool-riffle configurations, repeating bedform configurations, internal scaling parameters, and sediment transport. Ultimately, as the hydrodynamics of pool-riffle sequences are better understood, better bedform designs can be implemented in restoration projects.
3

Changes in recent effective discharge and geomorphology near the Old River Control on the lower Mississippi River

Knox, Richard Leo 30 October 2013 (has links)
The Mississippi River is considered the ultimate single channel meandering river. Five hundred km upstream from its mouth, about 25% of the river’s discharge is diverted into the Atchafalaya River. This diversion is controlled by the Old River Control structure, built by the US Army Corps of Engineers in stages since 1963, to stop the avulsion of the Mississippi River into the Atchafalaya. The study area is a 119 km sandy bedded reach near Old River Control that is highly impacted by engineering measures. Channel dimensions average 1,000 m wide with average thalweg depths of 23 m. The mean annual discharge is 15,000 m3s-1 with a water surface slope of 0.06 m per river mile. In a sandy bedded river, the effective discharge is the discharge which cumulatively transports the most sand. This study evaluates how the Old River Control structure has influenced an adjusting effective discharge between 1978 and 2011. The bed load component of sand transport is included by employing a novel, automated, cross-correlation technique. It was found that the upper limit for discharges that cumulatively transport 85% of the total sand load has decreased from 34,000 m3s-1 to 28,000 m3s-1 between 1978 and 2011. Sand transport from 1982 to 2011 occurred during progressively greater ratios of water discharge to the Atchafalaya River and corresponded to an aggradational trend in the nearby Mississippi River at Red River Landing stream gage. The combination of this sand transport trend and nearby channel aggradation is some indication that the diversion may not be stable and that the avulsion of the lower Mississippi River is ongoing. However, sand was transported at similar discharge ratios in the 1978 to 1982 and 2002 to 2011 periods. Future trends will reveal definitively if these findings indicate that the lower Mississippi River avulsion is continuing. Two aims are pursued by placing the effective discharge approach into the geomorphologic context of the study area. Ten zones are categorized by four distinct geomorphologic classes: meander, no islands; meander, geologic control; meander, islands and divided flow; and straight zones. One, these classes have merit for future research and are shown to be geomorphologically distinct in several ways: natural levee height and channel planform adjustment relationships, sinuosity and width to depth ratios, and bedform depth to height scaling. Two, this approach allows the comparison of the effective discharge to the study area’s geomorphology. Process-form linkages can be made between sediment transporting events and the three levels in a fluvial hierarchy: fluvial bedforms and channels, bars, and levees. Median grain size and channel position of sediment samples from these three levels were plotted on combined LiDAR and bathymetric derived cross- sections from specific geomorphologic zones. This analysis indicates that the fluvial hierarchy coincides with the stages of effective discharge but seems to scale to the elevation of natural levees. This study interjects a geomorphologic approach into the lower Mississippi River discourse and raises a number of interesting questions for further research. / text
4

Observations of vertical structures and bedform evolution with field-scale oscillatory hydrodynamic forcing

Nichols, Claire Suzanne 18 March 2008 (has links)
No description available.
5

Outcrop analysis of ooid grainstones in the Permian Grayburg Formation, Shattuck Escarpment, New Mexico

Parker, John Alexandre 01 November 2013 (has links)
Ooid grainstone reservoir architecture remains poorly understood, particularly because of sedimentologic and stratigraphic heterogeneities that are innate to grainstone body development. Understanding of Geospatial relationships and recovery of hydrocarbons from these significant reservoir facies can be improved with access to outcrop analog information from well exposed examples. Object-based models and other modern subsurface reservoir models are considered superior methods for portraying realistic sediment distributions. These models, however, are highly dependent on input data describing sediment-body geometry for faithful template generation. Such input data are notably rare in carbonate systems. Maps generated from modern depositional patterns give a first approximation of areal distribution, but they are not as useful for understanding final preserved stratigraphic thickness and internal facies, sedimentary structure, and grain-type patterns. For this purpose, studies of exceptional outcrops are required. The 18 km long oblique-dip-oriented wall of the Shattuck Escarpment provides such a unique exposure of Permian-age grainstones. The Shattuck Escarpment in the Guadalupe Mountains provides an oblique-dip profile that exposes a near-complete middle Permian Grayburg mixed clastic-carbonate shelf succession of three high-frequency sequences which contain 30 high-frequency cycles. Particularly important for this study are the four cycles that display full updip to downdip extents of ooid grainstone tidal bar and tidal delta objects. The data from the Shattuck wall presented in this paper focusses on the transgressive portion of the upper Grayburg, or G12 high-frequency sequence (HFS), located 5 km landward of the time-equivalent shelf margin. This interval is an analog for productive fields along the northwest shelf of the Delaware Basin and on the eastern flank of the Central Basin Platform. The goal of this project is to understand the sedimentology and facies/cycle architectural variability of tidally influenced shelf crest ooid grainstones of the Grayburg Formation. Comparing this outcrop data to modern grainstone deposits allows the reader to understand the small-scale and large-scale sedimentologic and architectural patterns in analogous subsurface ooid grainstone reservoirs. Spatial analysis of these cycles was carried out using measured sections and GigaPan (high resolution photomosaic) data. Petrophysical (Porosity and Permeability) data was collected from three separate vertical core plug transects approximately 1 km apart with a vertical resolution of 30 cm. Cycle-set-scale grainstone complexes up to 6m thick extend at least 4.25 km along depositional dip and show variations in permeability between 6-400 mD and porosities between 8-20% within the lower portions of the grainstone complex. / text
6

Formation conditions of bedforms under sediment-laden gravity currents / 堆積物重力流ベッドフォームの形成条件

Ohata, Koji 23 March 2021 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23017号 / 理博第4694号 / 新制||理||1673(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 成瀬 元, 准教授 堤 昭人, 教授 生形 貴男 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
7

Probabilistic modelling of bed-load composition.

Tait, Simon J., Heald, J., McEwan, I.K., Soressen, M., Cunningham, G., Willetts, B., Goring, D. 24 June 2009 (has links)
No / This paper proposes that the changes which occur in composition of the bed load during the transport of mixed-grain-size sediments are largely controlled by the distributions of critical entrainment shear stress for the various size fractions. This hypothesis is examined for a unimodal sediment mixture by calculating these distributions with a discrete particle model and using them in a probabilistic calculation of bed-load composition. The estimates of bed-load composition compare favorably with observations of fractional transport rates made in a laboratory flume for the same sediment, suggesting that the hypothesis is reasonable. The analysis provides additional insight, in terms of grain mechanics, into the processes that determine bed-load composition. These insights strongly suggest that better prediction methods will result from taking account of the variation of threshold within size fractions, something that most previous studies have neglected.
8

Remote sensing large-scale surface structures in the Wadden Sea. Application of satellite SAR data (TerraSAR-X) to record spatial distribution and dynamics of habitats and geomorphic structures for monitoring and long-term ecological research

Adolph, Inga Winny 06 April 2021 (has links)
The Wadden Sea off the coast of the southern North Sea is the largest coherent area of tidal flats worldwide. As a highly productive ecosystem it is of global importance, e.g. as nursery for fish and as a feeding and resting area for 10 – 12 million migratory birds following the East Atlantic Flyway. The outstanding ecological significance of this region corresponds to a high level of protection by EU directives and national law and by inscription as UNESCO World Heritage Site, all of which requires regular monitoring and assessment. Apart from the ecological aspects, the Wadden Sea is also of great importance for coastal protection. To survey the extensive, often inaccessible tidal area, remote sensing is essential and while mainly airborne techniques have been carried out for decades, now high-resolution satellite-borne sensors open up new possibilities relevant for monitoring and long-term ecological research. Especially satellite synthetic aperture radar (SAR) sensors offer a high availability of acquisitions as they operate largely independently of daylight and weather. The aim of the studies presented here was to explore the use of data from the TerraSAR-X satellite to record geomorphological structures and habitats for Wadden Sea Monitoring. More than 100 TerraSAR-X acquisitions from 2009 to 2016 were analyzed to distinguish various and variable surface types continuously influenced by tidal dynamics in the main study area, the tidal flats near the island of Norderney. Visual image interpretation supported by extensive in-situ verification proved to be a suitable and unsophisticated approach which is unspecific enough to identify mussel beds, fields of shell-detritus, gully structures, mud fields, and intertidal bedforms in the upper flats of the East Frisian Islands. The method proved to be robust against changes in geometry of acquisition and environmental influences. Several time series of TerraSAR-X data enabled to follow inter-annual and seasonal dynamics as well as event effects (Adolph et al. 2018). The high-frequency TerraSAR-X data revealed novel evidence of an intertidal bedform shift in an easterly direction during the study period. To this aim, an unsupervised ISODATA classification of textural parameters was developed to vectorize and compare the bedforms positions in a GIS (Adolph et al. 2017a). The same intertidal bedform area was chosen as test-site for comparison of different remote sensing methods, namely airborne lidar, satellite-based radar (TerraSAR-X) and electro-optical sensors (RapidEye) (Adolph et al. 2017b). High-resolution SAR data offer a relevant component for Wadden Sea Monitoring and Research, as they provide reliable, regular data with a high repetition rate. In particular, habitats with noticeable surface roughness, specific structures and textures are well reflected. Geomorphic Structures and their dynamics can be observed indirectly via detection of residual water trapped within. A comprehensive concept for Wadden Sea Monitoring however, requires automatized classifications and an integrative, multi-sensor approach (SAR, LIDAR, multi-spectral data, drones) in which different and complementary information, coverage and resolutions (spatial and temporal) contribute to an overall picture. The studies were carried out as part of the joint research project “Scientific monitoring concepts for the German Bight” (WIMO), jointly funded by the Ministry of Environment, Energy and Climate Protection (NMU) and the Ministry of Science and Culture (NMWK) of the Federal State of Lower Saxony. The findings have been published in Geo-Marine Letters 37/2 (2017) and in Remote Sensing 10/7 (2018).
9

Mobilité des sédiments fluviaux grossiers dans les systèmes fortement anthropisés : éléments pour la gestion de la basse vallée de la Durance / Bed mobility in highly modified fluvial systems : keys to understanding for river management (Durance River, South-Eastern France)

Chapuis, Margot 29 May 2012 (has links)
La Durance est une large rivière méditerranéenne à charge grossière et à lit divagant. Le fonctionnement hydro-sédimentaire de son bassin versant a été profondément modifié par la mise en place d'aménagements hydro-électriques et par les extractions de graviers, qui ont entraîné une rétraction de sa bande active et une incision marquée de son lit. Ces évolutions morphologiques correspondent à des enjeux majeurs en termes de gestion du territoire en moyenne et basse Durance, du fait de la nécessité du maintien d'une capacité d'écoulement du lit en crue, et de la mobilité latérale du lit, souvent incompatible avec l'occupation de la vallée. Cette thèse, basée sur la collecte de données de terrain, vise à développer un schéma de fonctionnement du transport sédimentaire dans les rivières à charge grossière de grande largeur, en intégrant les différentes échelles spatiales (et donc temporelles). Elle a également pour objectif de donner des clefs de compréhension pour la gestion des flux sédimentaires en Durance. Les mécanismes de la mobilité des particules sédimentaires et des formes fluviales sont étudiés dans une démarche ascendante de reformulation scientifique de questionnements opérationnels. / The Durance River (South-Eastern France) is a large and steep wandering gravel-bed river, deeply impacted by gravel mining and flow diversion in its whole catchment area. The Durance River is characterized by a sediment deficit that led to a reduction of active channel width and river bed degradation. These lateral and vertical dynamics lead to important issues in terms of landscape management, because of (i) maintaining the bed hydraulic capacity to evacuate flood discharges and (ii) planform evolution of the river that conflicts with landscape use. This field-based thesis aims at developing a functioning scheme of bedload transport in large gravel bed rivers at various spatial (and consequently temporal) scales and gives keys to understanding for sediment fluxes management on the Durance River. Particle and bedform mobility mechanisms are studied with a scientific approach closely linked to management issues.

Page generated in 0.042 seconds