• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Outcrop analysis of ooid grainstones in the Permian Grayburg Formation, Shattuck Escarpment, New Mexico

Parker, John Alexandre 01 November 2013 (has links)
Ooid grainstone reservoir architecture remains poorly understood, particularly because of sedimentologic and stratigraphic heterogeneities that are innate to grainstone body development. Understanding of Geospatial relationships and recovery of hydrocarbons from these significant reservoir facies can be improved with access to outcrop analog information from well exposed examples. Object-based models and other modern subsurface reservoir models are considered superior methods for portraying realistic sediment distributions. These models, however, are highly dependent on input data describing sediment-body geometry for faithful template generation. Such input data are notably rare in carbonate systems. Maps generated from modern depositional patterns give a first approximation of areal distribution, but they are not as useful for understanding final preserved stratigraphic thickness and internal facies, sedimentary structure, and grain-type patterns. For this purpose, studies of exceptional outcrops are required. The 18 km long oblique-dip-oriented wall of the Shattuck Escarpment provides such a unique exposure of Permian-age grainstones. The Shattuck Escarpment in the Guadalupe Mountains provides an oblique-dip profile that exposes a near-complete middle Permian Grayburg mixed clastic-carbonate shelf succession of three high-frequency sequences which contain 30 high-frequency cycles. Particularly important for this study are the four cycles that display full updip to downdip extents of ooid grainstone tidal bar and tidal delta objects. The data from the Shattuck wall presented in this paper focusses on the transgressive portion of the upper Grayburg, or G12 high-frequency sequence (HFS), located 5 km landward of the time-equivalent shelf margin. This interval is an analog for productive fields along the northwest shelf of the Delaware Basin and on the eastern flank of the Central Basin Platform. The goal of this project is to understand the sedimentology and facies/cycle architectural variability of tidally influenced shelf crest ooid grainstones of the Grayburg Formation. Comparing this outcrop data to modern grainstone deposits allows the reader to understand the small-scale and large-scale sedimentologic and architectural patterns in analogous subsurface ooid grainstone reservoirs. Spatial analysis of these cycles was carried out using measured sections and GigaPan (high resolution photomosaic) data. Petrophysical (Porosity and Permeability) data was collected from three separate vertical core plug transects approximately 1 km apart with a vertical resolution of 30 cm. Cycle-set-scale grainstone complexes up to 6m thick extend at least 4.25 km along depositional dip and show variations in permeability between 6-400 mD and porosities between 8-20% within the lower portions of the grainstone complex. / text
2

Spatial Trends and Facies Distribution of the High-Energy Alluvial Cutler Formation, Southeastern Utah

Allred, Isaac John 01 June 2016 (has links)
The Cutler Formation is composed of thick, arkosic, alluvial conglomerate, sandstone, and mudstone shed southwestward from the Uncompahgre Uplift into the Paradox Basin. More basin-ward the Cutler is recognized as a group consisting of differentiable formations. Discrete formations historically have not been distinguished near the uplift, but this study identified several separate successions in the Richardson Amphitheater. Research at the Richardson Amphitheater, ~12 km southwest of the uplift and ~30 km northeast of Moab, Utah, led to a systematic subdivision of the Permian Cutler Formation proximal to the uplift. Likely driven by channel cutting and migration across the alluvial fan, six 10-20 m thick successions are partially exposed. The dominant observed facies are basal conglomerate and channel-fill trough cross-stratified sandstone overlain by finer-grained distal sheetflood and frequently pedogenically altered sandstone. Down-warping of identified successions and the presence of additional sands within the area of flexure suggest that localized salt withdrawal created a sediment depocenter in the Richardson Amphitheater, ~6 km northwest of the Onion Creek salt diapir. The identified salt withdrawal feature is more proximal to the Uncompahgre Uplift than any of the major documented salt structures in the area and was not previously documented. Six measured stratigraphic sections and hundreds of high-precision differential GPS data points outlining major lateral erosional surfaces form the basis for interpretation. Five mapped erosional surfaces (bounding surfaces based upon differential GPS point interpolation) are laterally extensive within the approximately one square kilometer study area, and as such, represent stratigraphically significant surfaces. Within the generated structural geocellular model, stratigraphic data from measured sections informed facies modeling between major surfaces. This outcrop model may serve as an analogue for subsurface systems deposited in similar settings.

Page generated in 0.0716 seconds