• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 3
  • 1
  • 1
  • Tagged with
  • 19
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aproveitamento do resíduo de anodização do alumínio na produção do cimento sulfoaluminato de cálcio belítico / Using aluminum anodizing waste in the production of calcium sulfoaluminate belite cement

Costa, Eugenio Bastos da January 2013 (has links)
Embora o uso do cimento Portland com altos teores da fase alita [silicato tricálcico - C3S – (CaO)3.(SiO2)] seja difundido mundialmente, argumentos ambientais indicam a fabricação de cimentos com baixos teores desta fase e altos teores da fase belita [silicato dicálcico - C2S, (CaO)2.(SiO2)] justamente ao contrário do que é produzido atualmente. A alita tendo mais cálcio que a belita, libera mais CO2 para a atmosfera quando ocorre a decomposição do calcário (CaCO3 CaO + CO2 ) durante sua fabricação. Além disso, o C2S é formado a uma temperatura mais baixa (800 a 900ºC) que a temperatura em que o C3S (1350 a 1450ºC) é formado, necessitando desta forma, menos combustível e produzindo um cimento de moagem mais facilitada, tornando-o mais eco-eficiente. Um aspecto negativo dos cimentos belíticos é que os mesmos atingem seu nível máximo de resistência em idades mais avançadas, e este comportamento não é considerado adequado na indústria da construção civil atual, que busca alta produtividade em um curto espaço de tempo. Uma maneira de eliminar este problema seria acelerando as reações iniciais de hidratação e endurecimento. Uma alternativa à esta questão é combinar estes clínqueres belíticos com agentes expansivos de base sulfoaluminato ou em uma produção simultânea no clínquer, tais como os sulfoaluminato de cálcio belítico (CSAB), sendo estes ligantes considerados de baixo impacto ambiental. No entanto, o cimento CSAB requer uma maior quantidade de alumina, que geralmente é provinda da bauxita na sua fabricação. Devido ao elevado custo da bauxita para a produção deste cimento, a utilização de resíduos ricos em alumina é uma opção que pode agregar valor ao resíduo e aumentar a disponibilidade de ligantes de reduzido impacto ambiental. Desta forma, este trabalho apresenta uma alternativa para utilização do resíduo na produção do cimento CSAB. Foi realizada a caracterização físico-química do resíduo estudado, e são apresentados os resultados da produção de clínqueres CSAB formados a partir de três misturas, com variações no teor deste resíduo. As propriedades físico-mecânicas destes clínqueres foram avaliadas e comparadas com um clínquer referência e um cimento Portland comercial, da mesma forma, técnicas de difração de raio X, calorimetria e termogravimetria foram utilizadas para verificar a formação dos produtos de hidratação de pastas. Desta maneira, foi demonstrado que o aproveitamento do resíduo de anodização do alumínio para a produção do cimento CSAB é viável tecnicamente. O produto gerado possui características especiais, apresentando elevado desenvolvimento da resistência mecânica nas primeiras horas de hidratação. / Although currently Portland cement with high alite [(CaO)3.(SiO2)] content is the most used globally, environmental advices call for changes on the production for cements with lower alite and higher belite [(CaO)2.(SiO2)] contents. Alite, having more calcium than belite, releases more CO2 to the atmosphere in the course of cement manufacture, due to limestone decomposition (CaCO3 CaO + CO2 ). Besides, belite is formed at lower temperatures (800- 900ºC) than alite (1350-1450ºC), and for this reason less fuel is necessary for the process. Additionally, clinker is easier to grind, resulting in a less energy demanding and more sustainable process. However, belite cements reach the maximum strength level at later ages, drawing back the fast and active civil construction industry, which aims high productivity in a short time spam. In order to minimize this problem it is possible to accelerate the initial hydration reactions and hardening by combining the belite clinkers with expansive sulfoaluminate base agents, or in a simultaneous clinker production, such as calcium sulfoaluminate belite cements (CSAB). These binders have lower environmental impact. However, CSAB cement requires a higher amount of alumina, which comes from bauxite. As this material is costly, the use of alumina-rich residues comes as an option to aggregate value to the residue and to increase the availability of low environmental impact binders. This work presents an alternative use for alumina-rich residues in CSAB cement production. Physicochemical characterization of the aluminium anodizing sludge is presented together with results of the production of CSAB clinkers from 3 mixtures, with different residue content. Properties of the produced clinkers were evaluated and compared to a control clinker and to an ordinary Portland cement. X-ray diffraction, calorimetry and thermogravimetry analysis track the formation of hydration products in the cement pastes. The use of aluminium anodizing sludge to produce CSAB cement was proved to be technically viable, as the generated product has special characteristics, presenting high mechanical strength development at the first hours of hydration.
12

Synthèse et stabilité de la bélite : étude du potentiel cimentier / Synthesis and stability of belite : study of cement potentiel

Saidani, Sofien 19 July 2019 (has links)
La politique mondiale de réduction des émissions de gaz à effet serre repose en grande partie sur la recherche de nouvelles solutions pour l’industrie cimentaire qui contribue largement aux émissions de CO2. Parmi ces solutions, l’exploitation de ciments riches en silicate bicalcique, Ca2SiO4, ou bélite, qui est sa dénomination cimentaire, semble intéressante puisque le procédé industriel de fabrication requiert une moindre demande en calcaire et une température de cuisson plus basse que dans le cas des ciments Portland. A ce jour, les freins à une exploitation massive par les cimentiers de la bélite sont l’absence ou la lenteur de la réactivité avec l’eau, qui se traduit par une lente montée en résistance mécanique des ciments bélitiques, et le ‘dusting’ ou éclatement au refroidissement du fait de la transformation allotropique β. Les interprétations de ces phénomènes restent, à ce jour, contradictoires car elles reposent bien souvent sur l’analyse de la bélite dans un clinker, avec toute sa complexité. Aussi, nous avons choisi d’entreprendre une étude fondamentale des propriétés de β-Ca2SiO4. Afin de valoriser notre travail, nous avons essayé d’apporter des explications aux inconvénients majeurs qui bloquent l’exploitation des ciments bélitiques. Nous avons travaillé d’une part avec de la bélite synthétisée par voie chimique, pure ou dopée avec des éléments choisis (phosphore, soufre, bore) et, d’autre part, avec une bélite extraite d’un clinker sulfoalumineux bélitique. Nous nous sommes particulièrement intéressés à la stabilisation du polymorphe haute température β. Cette stabilisation a été étudiée d’un point de vue microstructural et chimique. La phase β est maclée. Les surfaces des grains présentent des défauts (dislocations, joints de macles et joints de grains avec des désorientations) qui sont autant de sites potentiels pour une réaction avec l’eau. Que ce soit la bélite de synthèse ou la bélite extraite d’un clinker, elle réagit rapidement avec l’eau. En revanche, la bélite dans une matrice cimentaire réagit lentement. Nous avons attribué cette caractéristique non pas à la lente hydraulicité de la bélite elle-même mais plutôt à la formation, au cours de l’hydratation du ciment, d’hydrates qui viennent recouvrir les grains de belite et empêcher sa dissolution. Ce travail propose également des solutions pour améliorer l’hydraulicité de la bélite contenue dans une matrice cimentaire. / The global policy for reducing greenhouse gas emissions is largely based on finding new solutions for the cement industry, which contributes significantly to CO2 emissions. Among these solutions, the exploitation of cements rich in dicalcium silicate, Ca2SiO4, or belite, which is its cementitious name, seems interesting since the industrial manufacturing process requires a lower demand for limestone and a lower firing temperature than in the case Portland cements. To date, the obstacles for a massive exploitation of the belite by cement producers are the absence or the slowness of its reactivity with the water, which results in a slow increase in mechanical resistance of the belite rich cements, and the 'dusting', or splitting on cooling due to the β allotropic transformation. The interpretations of these phenomena remain, to date, contradictory because they are often based on the analysis of belite in a clinker, with all its complexity. In this context, we have chosen to undertake a fundamental study on the properties of β-Ca2SiO4. In order to value our work, we have tried to explain the major disadvantages that retard or prevent the exploitation of belite rich cements. On one hand, we worked with chemically synthesized belite, either pure or doped with selected elements (phosphorus, sulfur, boron) and, on the other hand, with a belite extracted from a belite sulfoaluminate clinker. We focused on the stabilization of the high temperature β polymorph. This stabilization has been studied from a microstructural and chemical point of view. The β phase is twinned. The grain surfaces have defects (dislocations, twin joints and grain boundaries with disorientations) which are all potential sites for a reaction with water. Whether belite is synthetic or extracted from a clinker, it reacts quickly with water. In contrast, belite in a cement matrix responds slowly. We have attributed this characteristic not to the slow hydraulicity of the belite itself, but to the formation, during the hydration of the cement, of hydrates which cover the belite grains and prevent their dissolution. This work also proposes solutions to improve the hydraulicity of the belite contained in a cement matrix.
13

Vztah parametrů přípravy belitického cementu a jeho hydraulických vlastností / Relation between Preparation Parameters of Belite Cement and its Hydraulic Properties

Staněk, Theodor January 2009 (has links)
The dissertation thesis is devoted to the study of belite clinkers and to the possibilities of the increase in their hydraulic activity. The mechanism and the kinetics of belite clinker formation were studied together with the relation of the velocity of these processes and the hydraulic activity of clinker. The influence of various parameters (degree of lime saturation, duration and temperature of burning) of the belite clinker preparation on the belite clinker development in time, on belite polymorphism, on the chemical composition of belite crystals and on the belite cement hydraulic activity was studied, too. The research methods used for the investigation involved electron microscopy, optical microscopy, X-ray diffraction analysis, high-temperature microphotometry and calorimetry. The resulting clinkers were hydraulically activated by addition of calcium sulfate. The experiments have proven that the higher rate of belite formation does not lead to the increase of its hydraulic activity, as opposed to that of alite. On the other hand, the chemical activation by sulfate anions enables to prepare clinker with relatively higher degree of lime saturation with minor admixture of alite and anhydrite, which is hydraulically activated. The work was concluded by experimental burning of belite clinker doped with sulfate anions in a model rotary kiln and by the preparation of cements blended with common industrial alite clinker. The results indicate the possibility of separate industrial production of special belite clinker alongside with common alite clinker and the production of economically and environmentally beneficial blended Portland cements with suitable technological parameters, or targeted production of special cements with properties corresponding to their required utilization.
14

Aproveitamento de cinza pesada e lodo de anodização do alumínio para a produção do cimento sulfoaluminato de cálcio belítico / Using of bottom ash and aluminum anodizing sludge for the production of calcium sulfoaluminate belite cement

Costa, Eugenio Bastos da January 2016 (has links)
A produção de cimento gera um impacto ambiental negativo, principalmente relacionado à emissão de dióxido de carbono (CO2). O clínquer do cimento sulfoaluminato de cálcio belítico (CSAB) possui um menor teor de óxido de cálcio e é produzido com uma reduzida temperatura de sinterização (aproximadamente 200ºC a menos em relação ao clínquer Portland), sendo considerado mais eco-amigável. Para a produção do cimento CSAB são necessárias matérias-primas ricas em alumínio e convencionalmente a bauxita é o minério utilizado para compor a farinha, o que mais onera a produção desse tipo de cimento. Soma-se ainda o fato que a geração de resíduos e subprodutos industriais torna-se inerente aos processos e o coprocessamento de resíduos vem sendo cada vez mais utilizado por razões ambientais e energéticas. Logo, fontes alternativas de alumina são fundamentais para a viabilização deste cimento e o aproveitamento de resíduos agregaria um valor econômico e sustentável ao produto final. De modo estequiométrico, a bauxita pode ser completamente substituída pelo lodo de anodização do alumínio (LAA), o qual também pode complementar o conteúdo de alumínio de outros resíduos, valorizando-os. O objetivo deste estudo foi avaliar a produção e as propriedades de clínqueres/cimentos CSAB a partir da substituição da bauxita por cinza pesada e LAA. Para a caracterização das matérias-primas, clínqueres e cimentos nos estados anidro e hidratado foram utilizadas as seguintes técnicas: fluorescência de raios X; microscopia eletrônica de varredura e espectrometria por energia dispersiva; termogravimentria; calorimetria; e difração de raios X com refinamento pelo método de Rietveld. A partir dos resultados obtidos, a substituição da bauxita foi limitada a nível parcial devido à elevada formação de belita e periclásio. Nos clínqueres produzidos, foi constatado que a presença da cinza pesada favorece a formação da estrutura cristalina ortorrômbica da fase ye’elimita. A presença dos resíduos altera a quantificação das fases, porém não compromete a estabilização das mesmas. A presença dos resíduos na composição dos cimentos afeta o período inicial de hidratação devido à redução do conteúdo de ye’elimita. Nos clínqueres produzidos com cinza pesada, ocorre a formação de até 12,6% da fase alita a 1250ºC, principal constituinte do clínquer Portland. / Cement production generates high negative environmental impact, mainly associated to CO2 emissions. Calcium sulfoaluminate belite cement clinker (CSAB) has lower content of calcium oxide, and sintering reduced temperature (about 200°C lower than that used for Portland clinker), being considered as eco-friendly binder. For its production high amount of alumina is required, however the scarcity and high cost of bauxite make these cements costly. Additionally, the generation of waste and by-products becomes a drawback in the industrial processes and the coprocessing of wastes in cement plants is increasing for environmental and energy savings reasons. Alternative sources of alumina would add an economic and sustainable value to the final product and previous work has shown that the aluminum anodizing sludge can replace bauxite in the production process. Other sources of wastes can also be a possibility to increase the production and reduce the raw materials costs of these cements. Thus, the objective of this study was the evaluation of novel CSAB cements produced with bauxite replacement by bottom ash and aluminum anodizing sludge. CSAB cements were produced in the laboratory from different amounts of sludge and ashes. The raw materials, clinkers/cements and hydration products were physicaly-chemicaly and mechanical characterized. Results showed that the mineralogy composition of CSAB clinker was strongly affected due to the addition of bottom ash. The amount of bottom ash waste replacing bauxite controls the belite and periclase formation. Also it influences the early age hydration due the reduced ye’elimite formation and important changes in the crystalline structures of this phase occurs in the clinkers. Clinkers prepared from these replacement, are able to form 12.6% of alite (main phase Portland clinker), not normally found in CSAB clinkers, being sintered at 1250°C.
15

Aproveitamento de cinza pesada e lodo de anodização do alumínio para a produção do cimento sulfoaluminato de cálcio belítico / Using of bottom ash and aluminum anodizing sludge for the production of calcium sulfoaluminate belite cement

Costa, Eugenio Bastos da January 2016 (has links)
A produção de cimento gera um impacto ambiental negativo, principalmente relacionado à emissão de dióxido de carbono (CO2). O clínquer do cimento sulfoaluminato de cálcio belítico (CSAB) possui um menor teor de óxido de cálcio e é produzido com uma reduzida temperatura de sinterização (aproximadamente 200ºC a menos em relação ao clínquer Portland), sendo considerado mais eco-amigável. Para a produção do cimento CSAB são necessárias matérias-primas ricas em alumínio e convencionalmente a bauxita é o minério utilizado para compor a farinha, o que mais onera a produção desse tipo de cimento. Soma-se ainda o fato que a geração de resíduos e subprodutos industriais torna-se inerente aos processos e o coprocessamento de resíduos vem sendo cada vez mais utilizado por razões ambientais e energéticas. Logo, fontes alternativas de alumina são fundamentais para a viabilização deste cimento e o aproveitamento de resíduos agregaria um valor econômico e sustentável ao produto final. De modo estequiométrico, a bauxita pode ser completamente substituída pelo lodo de anodização do alumínio (LAA), o qual também pode complementar o conteúdo de alumínio de outros resíduos, valorizando-os. O objetivo deste estudo foi avaliar a produção e as propriedades de clínqueres/cimentos CSAB a partir da substituição da bauxita por cinza pesada e LAA. Para a caracterização das matérias-primas, clínqueres e cimentos nos estados anidro e hidratado foram utilizadas as seguintes técnicas: fluorescência de raios X; microscopia eletrônica de varredura e espectrometria por energia dispersiva; termogravimentria; calorimetria; e difração de raios X com refinamento pelo método de Rietveld. A partir dos resultados obtidos, a substituição da bauxita foi limitada a nível parcial devido à elevada formação de belita e periclásio. Nos clínqueres produzidos, foi constatado que a presença da cinza pesada favorece a formação da estrutura cristalina ortorrômbica da fase ye’elimita. A presença dos resíduos altera a quantificação das fases, porém não compromete a estabilização das mesmas. A presença dos resíduos na composição dos cimentos afeta o período inicial de hidratação devido à redução do conteúdo de ye’elimita. Nos clínqueres produzidos com cinza pesada, ocorre a formação de até 12,6% da fase alita a 1250ºC, principal constituinte do clínquer Portland. / Cement production generates high negative environmental impact, mainly associated to CO2 emissions. Calcium sulfoaluminate belite cement clinker (CSAB) has lower content of calcium oxide, and sintering reduced temperature (about 200°C lower than that used for Portland clinker), being considered as eco-friendly binder. For its production high amount of alumina is required, however the scarcity and high cost of bauxite make these cements costly. Additionally, the generation of waste and by-products becomes a drawback in the industrial processes and the coprocessing of wastes in cement plants is increasing for environmental and energy savings reasons. Alternative sources of alumina would add an economic and sustainable value to the final product and previous work has shown that the aluminum anodizing sludge can replace bauxite in the production process. Other sources of wastes can also be a possibility to increase the production and reduce the raw materials costs of these cements. Thus, the objective of this study was the evaluation of novel CSAB cements produced with bauxite replacement by bottom ash and aluminum anodizing sludge. CSAB cements were produced in the laboratory from different amounts of sludge and ashes. The raw materials, clinkers/cements and hydration products were physicaly-chemicaly and mechanical characterized. Results showed that the mineralogy composition of CSAB clinker was strongly affected due to the addition of bottom ash. The amount of bottom ash waste replacing bauxite controls the belite and periclase formation. Also it influences the early age hydration due the reduced ye’elimite formation and important changes in the crystalline structures of this phase occurs in the clinkers. Clinkers prepared from these replacement, are able to form 12.6% of alite (main phase Portland clinker), not normally found in CSAB clinkers, being sintered at 1250°C.
16

Aproveitamento de cinza pesada e lodo de anodização do alumínio para a produção do cimento sulfoaluminato de cálcio belítico / Using of bottom ash and aluminum anodizing sludge for the production of calcium sulfoaluminate belite cement

Costa, Eugenio Bastos da January 2016 (has links)
A produção de cimento gera um impacto ambiental negativo, principalmente relacionado à emissão de dióxido de carbono (CO2). O clínquer do cimento sulfoaluminato de cálcio belítico (CSAB) possui um menor teor de óxido de cálcio e é produzido com uma reduzida temperatura de sinterização (aproximadamente 200ºC a menos em relação ao clínquer Portland), sendo considerado mais eco-amigável. Para a produção do cimento CSAB são necessárias matérias-primas ricas em alumínio e convencionalmente a bauxita é o minério utilizado para compor a farinha, o que mais onera a produção desse tipo de cimento. Soma-se ainda o fato que a geração de resíduos e subprodutos industriais torna-se inerente aos processos e o coprocessamento de resíduos vem sendo cada vez mais utilizado por razões ambientais e energéticas. Logo, fontes alternativas de alumina são fundamentais para a viabilização deste cimento e o aproveitamento de resíduos agregaria um valor econômico e sustentável ao produto final. De modo estequiométrico, a bauxita pode ser completamente substituída pelo lodo de anodização do alumínio (LAA), o qual também pode complementar o conteúdo de alumínio de outros resíduos, valorizando-os. O objetivo deste estudo foi avaliar a produção e as propriedades de clínqueres/cimentos CSAB a partir da substituição da bauxita por cinza pesada e LAA. Para a caracterização das matérias-primas, clínqueres e cimentos nos estados anidro e hidratado foram utilizadas as seguintes técnicas: fluorescência de raios X; microscopia eletrônica de varredura e espectrometria por energia dispersiva; termogravimentria; calorimetria; e difração de raios X com refinamento pelo método de Rietveld. A partir dos resultados obtidos, a substituição da bauxita foi limitada a nível parcial devido à elevada formação de belita e periclásio. Nos clínqueres produzidos, foi constatado que a presença da cinza pesada favorece a formação da estrutura cristalina ortorrômbica da fase ye’elimita. A presença dos resíduos altera a quantificação das fases, porém não compromete a estabilização das mesmas. A presença dos resíduos na composição dos cimentos afeta o período inicial de hidratação devido à redução do conteúdo de ye’elimita. Nos clínqueres produzidos com cinza pesada, ocorre a formação de até 12,6% da fase alita a 1250ºC, principal constituinte do clínquer Portland. / Cement production generates high negative environmental impact, mainly associated to CO2 emissions. Calcium sulfoaluminate belite cement clinker (CSAB) has lower content of calcium oxide, and sintering reduced temperature (about 200°C lower than that used for Portland clinker), being considered as eco-friendly binder. For its production high amount of alumina is required, however the scarcity and high cost of bauxite make these cements costly. Additionally, the generation of waste and by-products becomes a drawback in the industrial processes and the coprocessing of wastes in cement plants is increasing for environmental and energy savings reasons. Alternative sources of alumina would add an economic and sustainable value to the final product and previous work has shown that the aluminum anodizing sludge can replace bauxite in the production process. Other sources of wastes can also be a possibility to increase the production and reduce the raw materials costs of these cements. Thus, the objective of this study was the evaluation of novel CSAB cements produced with bauxite replacement by bottom ash and aluminum anodizing sludge. CSAB cements were produced in the laboratory from different amounts of sludge and ashes. The raw materials, clinkers/cements and hydration products were physicaly-chemicaly and mechanical characterized. Results showed that the mineralogy composition of CSAB clinker was strongly affected due to the addition of bottom ash. The amount of bottom ash waste replacing bauxite controls the belite and periclase formation. Also it influences the early age hydration due the reduced ye’elimite formation and important changes in the crystalline structures of this phase occurs in the clinkers. Clinkers prepared from these replacement, are able to form 12.6% of alite (main phase Portland clinker), not normally found in CSAB clinkers, being sintered at 1250°C.
17

Studium tvorby a kinetiky hydratace belitického slínku / Studying Formation and Kinetics of Belite Clinker Hydration

Halešová, Adéla January 2017 (has links)
DIPLOMA THESIS IS DEVOTED TO THE STUDY OF PREPARATION OF PURE BELITE CLINKER FOR THE POTENTIAL INCREASE OF KINETICS OF THE HYDRATION PROCESS BY CHEMICAL ACTIVATION. THE THESIS OF THIS WORK IS BASED ON RESEARCH FINDINGS CONCERNING BELITE CLINKER AND RESEARCH AT THE INSTITUTE OF THD. THE THESIS AIMS TO DESIGN COMPOSITION OF THE RAW MEAL BURNING BELITE, FOLLOWING MODIFICATION BY SULPHATE AND POTASSIUM CARBONATE IN ORDER TO POTENTIALLY INCREASE THE REACTIVITY OF THE BURNT BELITE CLINKER AND THE LABORATORY FIRING OF PREPARED SAMPLES. THE LAST STEP WAS TO ASSESS THE MINERALOGICAL COMPOSITION OF BURNED SAMPLES XRD ANALYSIS AND FOLLOWING COMPARISON CELL PARAMETER OF BELITE WITH AND WITHOUT ADDED MODIFYING ADDITIVES.
18

Synthesis of portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

Chen, Irvin Allen 01 June 2010 (has links)
Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, Portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, 1.) incorporation of waste materials in portland cement synthesis, and 2.) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S–C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate-belite cement that contained medium C4A3 S and C2S contents showed good dimensional stability, sulfate resistance, and compressive strength development and was considered the optimum phase composition for calcium sulfoaluminate-belite cement in terms of comparable performance characteristics to portland cement. Furthermore, two calcium sulfoaluminate-belite cement clinkers were successfully synthesized from natural and waste materials such as limestone, bauxite, flue gas desulfurization sludge, Class C fly ash, and fluidized bed ash proportioned to the optimum calcium sulfoaluminate-belite cement synthesized from reagent-grade chemicals. Waste materials composed 30% and 41% of the raw ingredients. The two calcium sulfoaluminate-belite cements synthesized from natural and waste materials showed good dimensional stability, sulfate resistance, and compressive strength development, comparable to commercial portland cement. / text
19

Vliv oxidu barnatého na tvorbu a vlastnosti portlandského slínku / The influence of barium oxide on the formation and properties of portland clinker

Zezulová, Anežka January 2014 (has links)
Portland clinker is thanks to its large-scale production a continuously studied topic. Clinker, or Portland cement, is used for construction purposes, or for insulation and special applications. One of these special applications could be shielding of different types of radiation by making use of the content of barium ions. The present master’s thesis examines the influence of barium oxide on the formation and properties of Portland clinker, which could be, by incorporation of barium ions into the system, used as a binder for buildings resistant to various types of radiation. Barium sulfate and barium carbonate were added to the raw meal in order to prepare clinkers with different content of barium oxide. The effect of barium on the formation of clinker phases was studied (by XRD – Rietveld analysis and by the microscopic point integration), as well as the effects on the variations of temperature of the phase formation (TG-DTA) and the rate of alite formation under isothermal conditions. Furthermore, the ability of barium to become a part of clinker minerals was studied by SEM with EDS, and the solubility of barium phases by ICP-OES. The hydration of clinker minerals containing barium was studied by isothermal calorimetry.

Page generated in 0.0358 seconds