• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 34
  • 9
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Tectonique moléculaire : réseaux moléculaires à propriétés optiques assemblées par des liaisons hydrogène chargées / Molecular tectonics : molecular networks presenting optical properties, assembled by charge-assisted hydrogen bonds

Delcey, Nicolas 24 September 2012 (has links)
La conception et la préparation de réseaux moléculaires organiques et hybrides à l’état cristallin ont été envisagées par un processus itératif d’auto-assemblage entre des briques de construction moléculaires préprogrammées et complémentaires appelées tectons. Cette approche est basée sur la reconnaissance moléculaire de modules dicationiques, donneurs de liaisons hydrogène, et d’unités anioniques, accepteurs de liaisons hydrogène. Ainsi, la combinaison des tectons moléculaires de la famille des bis-benzimidazoliums, intrinsèquement luminescents, avec des anions polycyanométallates conduit à la formation de réseaux moléculaires hybrides luminescents à l’état cristallin. Il a été procédé à l'étude des propriétés photophysiques de ces réseaux à l'état solide. De même, l’association de bis-amidiniums,briques dicationiques, à des anions de type azodibenzoates mène à des assemblages cristallins possédant la propriété de photo-commutation, c’est-à-dire conduisant à une isomérisation sous stimulus lumineux. / The design and synthesis of organic and hybrid molecular networks in the crystalline state has been investigated using iterative self-assembly processes involving preprogrammed complementary molecular building blocks called tectons. This approach is based on molecular recognition events between dicationic hydrogen bond donors and anionic hydrogen bond acceptors tectons. Thus, the combination of intrinsically luminescent molecular tectons belonging to the family of cationic bis-benzimidazoliums with polycyanometallates anions leads to the formation of luminescent hybrid molecular networks in the crystalline state. Their optical properties have been studied in the solid state. Similarly, the association of bis-amidiniums, dicationic bricks, to azodibenzoates type anions leads to crystalline assemblies presenting photo-switching property, i.e. the ability to isomerise under light stimulus.
32

Tectonique moléculaire : réseaux moléculaires à propriétés optiques assemblées par des liaisons hydrogène chargées

Delcey, Nicolas 24 September 2012 (has links) (PDF)
La conception et la préparation de réseaux moléculaires organiques et hybrides à l'état cristallin ont été envisagées par un processus itératif d'auto-assemblage entre des briques de construction moléculaires préprogrammées et complémentaires appelées tectons. Cette approche est basée sur la reconnaissance moléculaire de modules dicationiques, donneurs de liaisons hydrogène, et d'unités anioniques, accepteurs de liaisons hydrogène. Ainsi, la combinaison des tectons moléculaires de la famille des bis-benzimidazoliums, intrinsèquement luminescents, avec des anions polycyanométallates conduit à la formation de réseaux moléculaires hybrides luminescents à l'état cristallin. Il a été procédé à l'étude des propriétés photophysiques de ces réseaux à l'état solide. De même, l'association de bis-amidiniums,briques dicationiques, à des anions de type azodibenzoates mène à des assemblages cristallins possédant la propriété de photo-commutation, c'est-à-dire conduisant à une isomérisation sous stimulus lumineux.
33

Epidemiological aspects of MBC resistance in Monilinia fructicola (Wint.) Honey and mechanisms of resistance

Sanoamuang, Niwat January 1992 (has links)
Isolates of Monilinia fructicola (Wint.) Honey obtained from stone fruit orchards in Hawkes Bay, North Island and from Californian fruit exported to New Zealand, were tested for resistance to methyl benzimidazole carbamate (MBC). Resistant isolates from the North Island had EC₅₀ values of >30,000, and most isolates from the imported fruit had of values approximately 1.5 mg a.i./l carbendazim. Sensitive isolates failed to grow on 1 mg a.i./l carbendazim. A detached peach shoot system was used in controlled conditions for estimation of values for incubation period, latent period and rate of spore production on flowers (cv Glohaven). The same variables and the rate of colonisation of host tissue were measured on fruit (cv Fantasia) in controlled conditions. An inoculum density of 1x10⁴ spore/flower or fruit greatly increased fitness in vivo compared to an inoculum density of 1x10² spore/flower (fruit). Isolates varied considerably, but there was no consistent relationship between the degrees of resistance and fitness. This was in contrast to earlier studies with dicarboximide resistant strains of M. fructicola. The survival in the field of 10 isolates resistant or sensitive to MBC or dicarboximide fungicides on twig cankers and mummified fruit was compared. The ability to produce conidia on twig cankers inoculated in late spring 1989 was maintained by all sensitive and MBC resistant isolates for at least 1 year. The production of conidia on mummified fruit inoculated in February 1990 decreased after 2-3 months in the field but some conidia were still produced on all fruit in the following spring. Dicarboximide resistant isolates produced less conidia than either the MBC resistant and the sensitive isolates. The pathogenicity and fitness of all isolates were similar to the original values after survival for 1 year. A technique was developed to produce apothecia reliably from inoculated peach (cv Black Boy) and nectarine (cv Fantasia) fruit in controlled conditions in the laboratory. The fruit were inoculated with resistant or sensitive isolates, or combinations, and were incubated for 8 weeks at 25°C (±1°C) with 12 hours photoperiod of fluorescent light (Sylvania 2x65 W, daylight) to produce mummified fruit. The fruit were then buried in moist autoclaved peat moss for 10 weeks at 25°C (±1°C) in the dark to form stromata. These fruit were then hydrated with running tap-water (total hardness (CaCO₃) = 47 g/m³ and conductivity at 20°C = 12.7 mS/m) for 72 hours. The hydrated mummified fruit were placed in moist peat moss and were incubated for 13-14 weeks at 8°C (±0.5°C) in the dark. At the end of this period, stipe initials were visible. Differentiation of stipe initials into mature apothecia occurred within 15-20 days after transfer to 12°C (±2 °C) with a 12 hour photoperiod of fluorescent and incandescent light. All isolates produced apothecia when treated in this way. A technique for isolation of ascospore sets in linear arrangement was developed for tetrad analysis of the inheritance of resistance. At least 3 hours of fluorescent and incandescent light at 12°C (±2°C) was essential to allow ascospore ejection from individual asci taken from apothecia previously maintained in a 12 hour photoperiod at 12°C (±1°C). A water film on the surface of water agar was necessary to hold a set of ejected ascospores in linear sequence. Single ascospores were obtained in sequence with the aid of a micromanipulator. Genetic analysis of MBC resistant isolates was carried out on ascospores derived from apothecia produced in the laboratory. Analysis of ascospore sets in linear arrangement and ascospore populations indicated that resistance to >30,000 mg a.i./l carbendazim (high-resistant) is governed by a single major gene and is affected by gene conversion mechanisms. Crossing over was frequent, suggesting that recombination of resistance with other characters, such as pathogenicity and fitness, may occur readily. The segregation ratio (1:1) from most resistant isolates revealed that heterokaryons containing both resistant and sensitive alleles were common in resistant populations and that resistance is dominant. Allozyme analysis of ascospore progeny through electrophoresis revealed a narrow genetic base of M. fructicola in New Zealand. The technique for reliable apothecial production in controlled conditions developed in this study provided an important step for the determination of the biology of M. fructicola strains resistant to MBC fungicides, and the complexity of its life cycle. Genetic heterogeneity in field populations can be conserved in one isolate through heterokaryosis, thus providing for adaptability of the pathogen to the changing environmental conditions. Knowledge on genetic variability, overwintering ability, pathogenicity and fitness factors may be useful for future management strategies of stone fruit brown rot. Special emphasis should be made in particular to prevent primary infection on blossoms, which would delay the establishment of recombinant strains of M. fructicola and the onset of brown rot epidemics.
34

Atomistic and molecular simulations of novel acid-base blend membranes for direct methanol fuel cells

Mahajan, Chetan Vasant 04 February 2014 (has links)
One of the main challenges to transform highly useful Direct Methanol Fuel Cells (DMFC) into a commercially viable technology has been to develop a low cost polymer electrolyte membrane (PEM) with high proton conductivity, high stability and low methanol crossover under operating conditions desirably including high temperatures. Nafion, the widely used PEM, fails to meet all of these criteria simultaneously. Recently developed acid-base polymer blend membranes constitute a promising class of PEMs alternative to Nafion on above criteria. Even though some of these membranes produce better performance than Nafion, they still present numerous opportunities for maximizing high temperature proton conductivity and dimensional stability with concomitant minimization of methanol crossover. Our contribution embarks on the fundamental study of one such novel class of blend membranes viz., sulfonated poly (ether ether ketone) (SPEEK)(95 % by weight) blended with polysulfone tethered with base (5 % by weight) such as 2-aminobenzimidazole (ABIm), 5-amino-benzotriazole (BTraz) and 1H-perimidine (PImd), developed by Manthiram group at The University of Texas at Austin. In this work, we report extensive all-atom classical as well as ab-initio molecular dynamics (MD) simulations of such water-methanol solvated blend membranes (as well as pure SPEEK and Nafion) the first time. Our approach consists of three steps: (1) Predict dynamical properties such as diffusivities of water, methanol and proton in such membranes (2) Validate against experiments (3) Develop understanding on the interplay between basic chemistry, structure and properties, the knowledge that can potentially be used to develop better candidate membranes. In particular, we elucidate the impact of simple, fundamental physiochemical features of the polymeric membranes such as hydrophilicity, hydrophobicity, structure or the size of the base on the structural manifestations on the bigger scale such as nanophase segregation, hydrogen bonding or pore sizes, which ultimately affect the permeant transport through such systems. / text

Page generated in 0.0429 seconds