• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • Tagged with
  • 14
  • 14
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Body Size in Ray-Finned Fishes: Revisiting Bergmann's Rule

O'Connor, William January 2023 (has links)
Thesis advisor: Christopher Kenaley / Bergmann’s rule predicts a change in body size with latitude, with larger members of a taxonomic group occurring further from the equator. This pattern has been described for many groups of organisms; however, no study has assessed this relationship across a substantial number of ray-finned fish species, the largest group of vertebrates. I performed Bayesian phylogenetic modeling using maximum length and latitude data for 3021 species of actinopterygians to assess Bergmann’s rule in the group. The impact of salinity tolerance on the relationship between length and latitude was also considered. Maximum length and salinity tolerance data were obtained from FishBase, and latitude data were obtained from museum records. I found that, overall, Bergmann’s rule holds and is not significantly affected by salinity tolerance except when not considering phylogeny, in which case only marine species show the trend. / Thesis (BA) — Boston College, 2023. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Departmental Honors. / Discipline: Biology.
2

Chronology and Faunal Evolution of the Middle Eocene Bridgerian North American Land Mammal “Age”: Achieving High Precision Geochronology

Tsukui, Kaori January 2015 (has links)
The age of the Bridgerian/Uintan boundary has been regarded as one of the most important outstanding problems in North American Land Mammal “Age” (NALMA) biochronology. The Bridger Basin in southwestern Wyoming preserves one of the best stratigraphic records of the faunal boundary as well as the preceding Bridgerian NALMA. In this dissertation, I first developed a chronological framework for the Eocene Bridger Formation including the age of the boundary, based on a combination of magnetostratigraphy and U-Pb ID-TIMS geochronology. Within the temporal framework, I attempted at making a regional correlation of the boundary-bearing strata within the western U.S., and also assessed the body size evolution of three representative taxa from the Bridger Basin within the context of Early Eocene Climatic Optimum. Integrating radioisotopic, magnetostratigraphic and astronomical data from the early to middle Eocene, I reviewed various calibration models for the Geological Time Scale and intercalibration of 40Ar/39Ar data among laboratories and against U-Pb data, toward the community goal of achieving a high precision and well integrated Geological Time Scale. In Chapter 2, I present a magnetostratigraphy and U-Pb zircon geochronology of the Bridger Formation from the Bridger Basin in southwestern Wyoming. The ~560 meter composite section spans from the lower Bridger B to the Bridger E, including the Bridgerian/Uintan NALMA boundary in the uppermost part of the section. Analysis of samples from 90 sites indicates two paleomagnetic reversals that are correlated to an interval spanning Chrons C22n, C21r, and C21n by comparison to the Geomagnetic Polarity Time Scale (GPTS). This correlation places the Bridgerian/Uintan faunal boundary within Chron C21n, during the initial cooling phase following the peak of the Early Eocene Climatic Optimum. Based on the bio- and magnetostratigraphic correlation, I provide correlation of other Bridgerian/Uintan boundary-bearing sections to the GPTS, demonstrating that in the western North America, the Bridgerian/Uintan boundary occurs everywhere in Chron C21n. In addition, U-Pb zircon geochronological analyses were performed on three ash beds from the Bridger Formation. High-precision U-Pb dates were combined with the paleomagnetic polarity data of the same ash beds as well as the integrative chronostratigraphy of the basin to assess prior calibration models for the Eocene part of the GPTS. The data from the Bridger Formation indicate that the Option 3 age model of Westerhold et al. (2008) best reconciles the geochronological data from all of the ash beds except for one. Thus I favor this Option 3 model, which indicates the ages of 56.33 Ma and 66.08 Ma for the Paleocene-Eocene Thermal Maximum and Cretaceous/Paleogene boundary, respectively. In Chapter 3, the body size evolution of three mammalian taxa from the Bridgerian NALMA was analyzed within the context of Bergmann’s Rule, which poses a correlation between the size of endotherms and climate (latitude). The Bridgerian NALMA is from a time of global cooling following the peak of the Early Eocene Climatic Optimum, thus according to Bergmann’s Rule, the Bridgerian mammals are expected to increase in size. This hypothesis is tested among Notharctus, Hyopsodus, and Orohippus, using the size of molar dentition as a proxy for their body size. These taxa represent three different ecomorphs, and I investigated if these taxa showed a pattern of body size change consistent with the prediction made by Bergmann’s Rule, and how their ecological adaptation may have affected their response to the climate change. Prior to analyzing the body size evolution, specimens of Notharctus and Hyopsodus were identified to species based on dental characters. This practice differs from previous studies in which species identification relied on relative size of the individuals and stratigraphic levels of origin. Within the new framework of morphologically determined species identification, five species of Notharctus were recognized, among which, N. pugnax, N. robustior and N. sp. indet. exhibited statistically significant body size increase in the time span of interest. Based on morphological analyses of Hyopsodus dentition, I recognized five species. Dentition-based body size analysis showed that H. lepidus and H. despiciens exhibited a statistically significant change towards larger size within the sampled interval. When analyzed at the generic level, a statistically significant increase was observed for both Notharctus and Hyopsodus. Finally, a genus-level analysis of Orohippus showed a lack of statistically significant size increase over the study interval. Thus, among the three taxa from the Bridgerian, Bergmann’s Rule is supported by Notharctus and Hyopsodus, at least at the genus level, but not by Orohippus, although the patterns are more variable at the intraspecific level. In Chapter 4, 40Ar/39Ar dates were obtained from sanidines from the middle Eocene Henrys Fork tuff and Upper Carboniferous Fire Clay tonstein, with the goal of making highly precise measurements of these two samples, keyed to the Fish Canyon monitor standard. Analytically, both samples were well characterized, as had been shown previously. The irradiation disk was arranged such that there would have been control from the Fish Canyon surrounding each of the unknown pits. However, due to several complications in the lab during the course of the experiment, only the analyses from one run disk (Disk 677) were of the quality needed for the goals of the study. As a result, the Fish Canyon sanidine standards that were irradiated near the center of the irradiation disk had to be discarded, and thus, the neutron fluence could not be mapped out precisely across the entire disk. The 40Ar/39Ar age relative to Fish Canyon sanidines is 47.828 ± 0.205 Ma and 311.937 ± 1.282 Ma for the Henrys Fork tuff and Fire Clay tonstein, respectively (1σ, including error on the age of the monitor). Because the ages were both offset about the same amount, I explored the option of using the U-Pb ID-TIMS ages of the Henrys Fork tuff and Fire Clay tonstein to test the agreement in the chronometers. The Henrys Fork tuff was dated at 48.260 ± 0.107 Ma (1σ, including error on the age of the monitor) using the Fire Clay sanidines and assuming its age is the U-Pb zircon age. The Fire Clay tonstein was dated at 314.593 ± 0.699 Ma (1σ, including error on the age of the monitor), using the Henrys Fork sanidines and assuming its age is the U/Pb zircon age. Although the complications encountered render these data unpublishable, they show great promise as the ages of each sanidine sample, tied to the other ash using the other ash’s U-Pb age, give results that are in close agreement between the two chronometers on the same sample (e.g., 314.593 ± 0.699 Ma vs. 314.554 ± 0.020 Ma at 1σ for sanidine and zircon respectively from the Fire Clay tonstein, and 48.260 ± 0.107 Ma vs. 48.265 ± 0.008 Ma 1σ for sanidine and zircon respectively from the Henrys Fork tuff).
3

Phenotypic evolution as a response to thermal ecology in the ferocious waterbug Abedus herberti (Hemiptera: Belostomatidae) /

Pelegrin, Arthur Lomis. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 81-84). Also available on the World Wide Web.
4

Geographic variation of Niviventer coxingi in body size and mitochondrial D-loop region

Chan, Hsiao-ting 13 February 2004 (has links)
Summarized the results of previous studies, the body size of Niviventer coxingi seemed to be correlated with altitude. For more exact evidence, geographic variations of body lengths and appendage sizes among areas were examined. Moreover, Freckleton et al. (2003) indicated that phylogenetic relationships may affect the results of one¡¦s study while variation of body size is discussed. Therefore, the phylogeographic variation among different areas was also examined in this study. The body lengths of N. coxingi in higher altitude (Fong-gang, 1700 m) were shorter than in lower altitude (Shan-ping 700 m). Body lengths of N. coxingi in Shan-ping were longer than other areas but Wu-shih-kang; and N. coxingi in Fong-gang were longer than those in Wu-tou Mountain; but no significant differences were found among other areas. No significant differences were found in appendage sizes but hind-foot length. Significant differences of the hind-foot length were only found between Shan-ping which had the longest hind-foot lengths in average and those in Wu-tou Mountain which had the shortest. No correlations were found between altitudes and the body length or appendage sizes of N. coxingi. The phylogenetic relationships based on D-loop region of N. coxingi were reconstructed by neighbor-joining, maximum parsimony and maximum-likelihood methods. An N. culturatus was used to be an outgroup. All three trees represented similar patterns. Although some individuals from neighborhood grouped together, some individuals from the same area represented distantly. Moreover, many branches represented in the root of the consensus trees because of the low bootstrap value. The results revealed the geographic variations did not correlated with their phylogenetic relationships and the heat conservation/ dissipation mechanism, which was the traditional explanation of Bergmann¡¦s rule, was not appropriate for N. coxingi, either.
5

A multidimensional perspective on the role of behavior in evolution

Munoz, Martha Monica 23 October 2014 (has links)
Behavior determines how organisms interact with their environment, and has long been posited as a pacemaker for evolution. The classical view is that novel behaviors expose organisms to new selective pressures, in turn "driving" evolution. Behavior can also restrain evolutionary change. Some behaviors, such as thermoregulation, help organisms maintain a constant selective environment, thus "inhibiting" evolution. This thesis seeks to understand the role of behavior in influencing the evolutionary process. In the first part, I test the hypothesis that the same behavior can simultaneously impede and impel evolution in different traits. I focus on the lizard, Anolis cybotes, from the Caribbean island of Hispaniola. Through a replicated field experiment I show that behavioral flexibility allows these lizards to maintain a constant body temperature in markedly different thermal habitats. I determine that this similarity in body temperatures is associated with physiological stasis, as the preferred temperature and heat tolerance are nearly identical among populations. I demonstrate that the behavioral change allowing lizards to maintain a constant body temperature involves a perch switch. Finally, I demonstrate that this shift in structural habitat use from trees at low elevation to rocks at high elevation in turn impels morphological evolution in traits associated with rock use, and that these traits are likely genetically based. Thus, a perch switch to rocks at high elevation is simultaneously impeding physiological evolution, whilst impelling morphological evolution. In the second part of my study, I asked whether rates of evolution differ among physiological traits, and how thermoregulation influences these rates. I found that cold tolerance evolves significantly faster than heat tolerance in the cybotoid anoles, a clade of anoles that contains A. cybotes and its relatives. I demonstrate that thermal variation is considerably greater during the day than at night and, at high elevation, nighttime temperatures are so cold that they would incapacitate most lizards. In the absence of thermal refuges and behavioral buffering, lizards at high elevation have no choice but to adapt their physiology. Thus, the ability to thermoregulate during, but not at night, likely influences differences in rates of evolution between heat and cold tolerance.
6

Does global warming affect morphology of birds?

Al-Hayali, Abdullah January 2020 (has links)
Bergmann’s and Allen’s rule suggest that for the same species individuals found further north, tend to have larger body sizes and smaller appendages compared to individuals further south, respectively, due to constraints for thermal regulation. This has shown especially true for birds and mammals.  In this paper, I test to see if global warming has led to a change in morphology for birds, i.e. body weight and wing size. We use year as a proxy for temperature as global warming has on average lead to an increase in the earth’s surface temperature over the last century with most of the change occurring since the 1980’s.  To test the hypothesis, I gathered data of male, young of the year birds during autumn migration for a select number of species with different wintering strategies, i.e. resident to long-distance migration. This data came from two Swedish bird observatories where standardized wing and weight measurements have been collected since 1986, coincident with the observed climate warming. The results of this study show that during this period, changes in body mass and wing length did not support the hypothesis that global warming has had a broad impact on the morphology of birds. Given that these results contradict that of other studies, analysis from species across a much wider latitudinal breadth of Europe, including, additional species and different age and sex classes should be investigated.
7

DO BUMBLEBEES PARTITION AN ELEVATIONAL GRADIENT BY BODY SIZE?

Al-Hayali, Abdullah January 2022 (has links)
As the climate warms, Arctic bumblebee species face the loss of habitat and must deal with increased competition from southern species tracking their thermal and habitat niches north, for example Bombus terrestris. Previous studies demonstrate that bumblebees follow Bergmann’s rule, i.e., larger body sizes at higher latitudes, despite bumblebees not being considered truly ectothermic, as they can generate heat through muscular activity (i.e., beating their wings). This study seeks to confirm and understand the relationship between body size and temperature using an elevational gradient as a proxy for climate. In this study, I examined 13 plots (420-1164 m.a.s.l.) set along the 3.4 km transect up the slope of Mt. Nuolja in Abisko National Park, Sweden. For body size, I chose to use the commonly accepted proxy distance between the base of the wings (i.e., intertegular distance). For temperature, I chose the mean temperature at time of visitation. Results show that climate is a significant explanatory variable for bumblebee body size, with an overall increasing body size with increasing elevation (i.e., colder climate), although most of the variance is explained by caste, i.e., queens having a larger body size than workers. Body size also shows some correlation with day of capture, which can be explained by changes in environmental conditions (e.g., temperature, flowering plant species) during the growing season experienced by the different emerging times for the castes. Given that caste was the most useful explanatory variable for body size, future studies could look at a larger environmental gradient, for example, by sampling at multiple locations along the entire Scandes mountain range to see if the effects found are localized. Further, specific habitat and specific traits of preferred plants may also help to elucidate body-size differences between species and castes. For example, many bumblebee species’ castes emerge at a specific time of year when only certain flowering plant species in specific habitats are available. This important research would also help to illuminate whether bumblebees and the species of plants they pollinate remain synchronous as climate warming accelerates. Nevertheless, my results show an overall positive relationship between bumblebee body size and elevation, indicating that a warming climate will result in reduced body sizes among bumble bee species. Future studies will have to investigate what consequences this will have for Arctic bumblebee populations – and for the plants that rely on bumblebee visits for their pollination.
8

Do bumblebees patition an elevational gradient by body size?

Al-Hayali, Abdullah January 2022 (has links)
As the climate warms, Arctic bumblebee species face the loss of habitat and must deal with increased competition from southern species tracking their thermal and habitat niches north, for example Bombus terrestris. Previous studies demonstrate that bumblebees follow Bergmann’s rule, i.e., larger body sizes at higher latitudes, despite bumblebees not being considered truly ectothermic, as they can generate heat through muscular activity (i.e., beating their wings). This study seeks to confirm and understand the relationship between body size and temperature using an elevational gradient as a proxy for climate. In this study, I examined 13 plots (420-1164 m.a.s.l.) set along the 3.4 km transect up the slope of Mt. Nuolja in Abisko National Park, Sweden. For body size, I chose to use the commonly accepted proxy distance between the base of the wings (i.e., intertegular distance). For temperature, I chose the mean temperature at time of visitation. Results show that climate is a significant explanatory variable for bumblebee body size, with an overall increasing body size with increasing elevation (i.e., colder climate), although most of the variance is explained by caste, i.e., queens having a larger body size than workers. Body size also shows some correlation with day of capture, which can be explained by changes in environmental conditions (e.g., temperature, flowering plant species) during the growing season experienced by the different emerging times for the castes. Given that caste was the most useful explanatory variable for body size, future studies could look at a larger environmental gradient, for example, by sampling at multiple locations along the entire Scandes mountain range to see if the effects found are localized. Further, specific habitat and specific traits of preferred plants may also help to elucidate body-size differences between species and castes. For example, many bumblebee species’ castes emerge at a specific time of year when only certain flowering plant species in specific habitats are available. This important research would also help to illuminate whether bumblebees and the species of plants they pollinate remain synchronous as climate warming accelerates. Nevertheless, my results show an overall positive relationship between bumblebee body size and elevation, indicating that a warming climate will result in reduced body sizes among bumble bee species. Future studies will have to investigate what consequences this will have for Arctic bumblebee populations – and for the plants that rely on bumblebee visits for their pollination.
9

Latitudinal Gradients in Body Size in Marine Tardigrades

Bartels, Paul J., Fontaneto, Diego, Roszkowska, Milena, Nelson, Diane R., Kaczmarek, Łukasz 16 March 2020 (has links)
Homeotherms and many poikilotherms display a positive relationship between body size and latitude, but this has rarely been investigated in microscopic animals. We analysed all published records of marine Tardigrada to address whether microscopic marine invertebrates have similar ecogeographical patterns to macroscopic animals. The data were analysed using spatially explicit generalized least squares models and linear models. We looked for latitudinal patterns in body size and species richness, testing for sampling bias and phylogenetic constraints. No latitudinal pattern was detected for species richness, and sampling bias was the strongest correlate of species richness. A hump-shaped increase in median body size with latitude was found, and the effect remained significant for the Northern Hemisphere but not for the Southern. The most significant effect supporting the latitudinal gradient was on minimum body size, with smaller species disappearing at higher latitudes. Our results suggest that biogeographical signals were observed for body size, albeit difficult to detect in poorly studied groups because of swamping from biased sampling effort and from low sample size. We did not find a significant correlation with the latitudinal pattern of body size and ecologically relevant net primary productivity.
10

Kraniometrická studie středoevropských populací bělozubek Crocidura suaveolens a C. leucodon (Mammalia: Soricomorpha) / Craniometric study of Central European populations of the white-toothed shrews Crocidura suaveolens and C. leucodon (Mammalia: Soricomorpha)

Milerová, Petra January 2014 (has links)
Interspecific and intraspecific size variability of the skull, mandibles and teeth of the lesser white- toothed shrew Crocidura suaveolens and the bicolored white-toothed shrew C. leucodon was studied on material of 350 skulls and 465 mandibles of white-toothed shrews obtained by analysis of the barn owl pellets originating from four regions in the Czech Republic and one region in the southern Slovakia. C. suaveolens was present in all regions under study, while sympatric C. leucodon occurred in three regions only. In total, 21cranial and dental measurements and 4 mandibular measurements were investigated. It was found that the most reliable measurement enabling discrimination between skulls of both species in the whole studied material is the lenght of the lower dental row. If skulls of both species were evaluated separately for each area of their sympatry it was possible to use also the distance between second molars M2 and the width of premolar P4 . Skulls of these two species can also be distinguished by bivariate graphs using the length and width of premolar P4 and the palatal length. We studied relationships between cranial measurements of both species and geoclimatic factors such as longitude, latitude, mean annual temperature and mean annual percipitation. It was found that variability of...

Page generated in 0.3407 seconds