Spelling suggestions: "subject:"bethe Ansatz"" "subject:"sethe Ansatz""
21 |
Linking Chains Together : String Bits and the Bethe AnsatzLübcke, Martin January 2004 (has links)
<p>This thesis is divided into two parts. In the first part we focus mainly on certain aspects of the AdS/CFT correspondence. The AdS/CFT correspondence is a proposed duality between Type IIB superstring theory on AdS<sub>5</sub> x<sub> </sub>S<sup>5</sup> and N = 4 supersymmetric Yang-Mills theory. In the BMN limit string states located in the center of AdS<sub>5</sub> rotate quickly around the equator of the S<sup>5</sup> and correspond, in the dual theory, to operators constructed as long chains of sub-operators. This structure of the operators can be formulated as a spin chain and by using the Bethe ansatz their properties can be obtained by solving a set of Bethe equations. Having infinitely many sub-operators, there are methods for solving the Bethe equations in certain sectors. In paper III finite size corrections to the anomalous dimensions in the SU(2) sector are calculated to leading order.</p><p>Inspired by the chain structure of the corresponding operators, the theory of string bits treats the strings as a discrete sets of points. This theory suffers from the problem of fermion doubling, a general pathology of fermions on a lattice. In paper II we show how to adjust the theory in order to avoid this problem and, in fact, use the fermion doubling to our advantage. The second part of the thesis studies the low energy behaviour of SU(2) Yang-Mills theory in 4 space-time dimensions. In paper I we perform numerical calculations on an effective action for this theory. We propose the existence of a knotted trajectory within the dynamics of this effective action.</p>
|
22 |
Linking Chains Together : String Bits and the Bethe AnsatzLübcke, Martin January 2004 (has links)
This thesis is divided into two parts. In the first part we focus mainly on certain aspects of the AdS/CFT correspondence. The AdS/CFT correspondence is a proposed duality between Type IIB superstring theory on AdS5 x S5 and N = 4 supersymmetric Yang-Mills theory. In the BMN limit string states located in the center of AdS5 rotate quickly around the equator of the S5 and correspond, in the dual theory, to operators constructed as long chains of sub-operators. This structure of the operators can be formulated as a spin chain and by using the Bethe ansatz their properties can be obtained by solving a set of Bethe equations. Having infinitely many sub-operators, there are methods for solving the Bethe equations in certain sectors. In paper III finite size corrections to the anomalous dimensions in the SU(2) sector are calculated to leading order. Inspired by the chain structure of the corresponding operators, the theory of string bits treats the strings as a discrete sets of points. This theory suffers from the problem of fermion doubling, a general pathology of fermions on a lattice. In paper II we show how to adjust the theory in order to avoid this problem and, in fact, use the fermion doubling to our advantage. The second part of the thesis studies the low energy behaviour of SU(2) Yang-Mills theory in 4 space-time dimensions. In paper I we perform numerical calculations on an effective action for this theory. We propose the existence of a knotted trajectory within the dynamics of this effective action.
|
23 |
Transições de fase quânticas e equações do ansatz de Bethe para o modelo de Bose-Hubbard de dois sítiosLima, Diefferson Rubeni da Rosa de January 2010 (has links)
Neste trabalho nós investigamos o modelo de Bose-Hubbard de dois sítios atrativo sob o ponto de vista do ansatz de Bethe. Este modelo descreve o tunelamento Josephson entre dois condensados de Bose-Einstein. Nós iniciamos estabelecendo a integrabilidade do modelo através da álgebra de Yang-Baxter. Usando uma análise clássica nós obtemos o diagrama de parâmetros do sistema. Nós estudamos então as transições de fase quânticas do modelo usando os conceitos de gap de energia, emaranhamento e fidelidade. Nós encontramos que o ponto crítico obtido utilizando estes conceitos coincide com o ponto fixo de bifurcação obtido na análise clássica. Além disso, nós mostramos que este ponto crítico também pode ser identificado através de uma mudança no comportamento das soluções das equações do ansatz de Bethe do modelo para o estado fundamental. / In this work we investigate the attractive two-site Bose Hubbard model from a Bethe ansatz perspective. This model describes Josephson tunneling between two Bose-Einstein condensates. We begin by establishing the integrability of the model through the Yang- Baxter algebra. Using a classical analysis we obtain the phase space xed points of the system. Then we study the quantum phase transitions of the model using the concepts of energy gap, entanglement entropy and the delity. We nd that the critical point obtained using these concepts coincides with the bifurcation point obtained in the classical analysis. Moreover, we also show that this critical point can be also identi ed through a di erent behaviour of the ground-state solutions of the Bethe ansatz equations.
|
24 |
Modelos exatamente solúveis para gases ultrafriosKuhn, Carlos Claiton Noschang January 2012 (has links)
Modelos exatamente solúveis para gases de férmions e bósons ultrafrios são estudados via o método do ansatz de Bethe termodinâmico. Resultados analíticos e numéricos são obtidos para o gás de Fermi de duas componentes com população de férmions não balanceada no regime atrativo em uma dimensão. Para o modelo de três componentes, soluções numéricas das equações do ansatz de Bethe termodinâmico confirmam que as expressões analíticas para os campos críticos e os diagramas de fases são muito precisas no regime de acoplamente forte. Para o regime de acoplamento fraco, derivamos as expressões analíticas para os campos críticos e os diagramas de fases e encontramos uma concordância muito boa entre os resultados analíticos e numéricos. Também verificamos que a fase triônica ´e suprimida para o regime de acoplamento fraco. Através de um estudo numérico obtivemos os diagramas de fase em regimes intermediários, e mostramos que a transição entre os regimes forte e fraco ocorre de forma suave ao variar o parâmetro de acoplamento. Apresentamos também um estudo detalhado para o gás de bósons com três componentes, obtendo expressões analíticas para quantidades físicas como densidade de partículas, compressibilidade e magnetização. A criticalidade quântica do modelo também foi investigada. / Exactly solvable models of ultracold Fermi and Bose gases are examined via the thermodynamic Bethe Ansatz method. Analytical and numerical results are obtained for the two-component one-dimensional attractive Fermi gas with population imbalance. For the three-component model, numerical solution of the thermodynamic Bethe ansatz equations confirm that the analytical expressions for the critical fields and the resulting phase diagrams at zero temperature are highly accurate in the strong coupling regime. For the weak coupling regime we derive the analytical expressions for the critical fields and the phase diagrams. Interestingly, in the weak regime the trionic phase is supressed. By means of a numerical study we obtain the phase diagrams at intermediate coupling regimes, showing that the crossover from strong to weak regimes occurs smoothly by varying the coupling parameter. We also present a detailed study of the three component Bose gas and obtain analytical expressions for physical quantities, such as the density of particles, compressibility and magnetisation. The quantum criticality of the model is also investigated.
|
25 |
Transições de fase quânticas e equações do ansatz de Bethe para o modelo de Bose-Hubbard de dois sítiosLima, Diefferson Rubeni da Rosa de January 2010 (has links)
Neste trabalho nós investigamos o modelo de Bose-Hubbard de dois sítios atrativo sob o ponto de vista do ansatz de Bethe. Este modelo descreve o tunelamento Josephson entre dois condensados de Bose-Einstein. Nós iniciamos estabelecendo a integrabilidade do modelo através da álgebra de Yang-Baxter. Usando uma análise clássica nós obtemos o diagrama de parâmetros do sistema. Nós estudamos então as transições de fase quânticas do modelo usando os conceitos de gap de energia, emaranhamento e fidelidade. Nós encontramos que o ponto crítico obtido utilizando estes conceitos coincide com o ponto fixo de bifurcação obtido na análise clássica. Além disso, nós mostramos que este ponto crítico também pode ser identificado através de uma mudança no comportamento das soluções das equações do ansatz de Bethe do modelo para o estado fundamental. / In this work we investigate the attractive two-site Bose Hubbard model from a Bethe ansatz perspective. This model describes Josephson tunneling between two Bose-Einstein condensates. We begin by establishing the integrability of the model through the Yang- Baxter algebra. Using a classical analysis we obtain the phase space xed points of the system. Then we study the quantum phase transitions of the model using the concepts of energy gap, entanglement entropy and the delity. We nd that the critical point obtained using these concepts coincides with the bifurcation point obtained in the classical analysis. Moreover, we also show that this critical point can be also identi ed through a di erent behaviour of the ground-state solutions of the Bethe ansatz equations.
|
26 |
Modelos exatamente solúveis para gases ultrafriosKuhn, Carlos Claiton Noschang January 2012 (has links)
Modelos exatamente solúveis para gases de férmions e bósons ultrafrios são estudados via o método do ansatz de Bethe termodinâmico. Resultados analíticos e numéricos são obtidos para o gás de Fermi de duas componentes com população de férmions não balanceada no regime atrativo em uma dimensão. Para o modelo de três componentes, soluções numéricas das equações do ansatz de Bethe termodinâmico confirmam que as expressões analíticas para os campos críticos e os diagramas de fases são muito precisas no regime de acoplamente forte. Para o regime de acoplamento fraco, derivamos as expressões analíticas para os campos críticos e os diagramas de fases e encontramos uma concordância muito boa entre os resultados analíticos e numéricos. Também verificamos que a fase triônica ´e suprimida para o regime de acoplamento fraco. Através de um estudo numérico obtivemos os diagramas de fase em regimes intermediários, e mostramos que a transição entre os regimes forte e fraco ocorre de forma suave ao variar o parâmetro de acoplamento. Apresentamos também um estudo detalhado para o gás de bósons com três componentes, obtendo expressões analíticas para quantidades físicas como densidade de partículas, compressibilidade e magnetização. A criticalidade quântica do modelo também foi investigada. / Exactly solvable models of ultracold Fermi and Bose gases are examined via the thermodynamic Bethe Ansatz method. Analytical and numerical results are obtained for the two-component one-dimensional attractive Fermi gas with population imbalance. For the three-component model, numerical solution of the thermodynamic Bethe ansatz equations confirm that the analytical expressions for the critical fields and the resulting phase diagrams at zero temperature are highly accurate in the strong coupling regime. For the weak coupling regime we derive the analytical expressions for the critical fields and the phase diagrams. Interestingly, in the weak regime the trionic phase is supressed. By means of a numerical study we obtain the phase diagrams at intermediate coupling regimes, showing that the crossover from strong to weak regimes occurs smoothly by varying the coupling parameter. We also present a detailed study of the three component Bose gas and obtain analytical expressions for physical quantities, such as the density of particles, compressibility and magnetisation. The quantum criticality of the model is also investigated.
|
27 |
Transições de fase quânticas e equações do ansatz de Bethe para o modelo de Bose-Hubbard de dois sítiosLima, Diefferson Rubeni da Rosa de January 2010 (has links)
Neste trabalho nós investigamos o modelo de Bose-Hubbard de dois sítios atrativo sob o ponto de vista do ansatz de Bethe. Este modelo descreve o tunelamento Josephson entre dois condensados de Bose-Einstein. Nós iniciamos estabelecendo a integrabilidade do modelo através da álgebra de Yang-Baxter. Usando uma análise clássica nós obtemos o diagrama de parâmetros do sistema. Nós estudamos então as transições de fase quânticas do modelo usando os conceitos de gap de energia, emaranhamento e fidelidade. Nós encontramos que o ponto crítico obtido utilizando estes conceitos coincide com o ponto fixo de bifurcação obtido na análise clássica. Além disso, nós mostramos que este ponto crítico também pode ser identificado através de uma mudança no comportamento das soluções das equações do ansatz de Bethe do modelo para o estado fundamental. / In this work we investigate the attractive two-site Bose Hubbard model from a Bethe ansatz perspective. This model describes Josephson tunneling between two Bose-Einstein condensates. We begin by establishing the integrability of the model through the Yang- Baxter algebra. Using a classical analysis we obtain the phase space xed points of the system. Then we study the quantum phase transitions of the model using the concepts of energy gap, entanglement entropy and the delity. We nd that the critical point obtained using these concepts coincides with the bifurcation point obtained in the classical analysis. Moreover, we also show that this critical point can be also identi ed through a di erent behaviour of the ground-state solutions of the Bethe ansatz equations.
|
28 |
Modelos exatamente solúveis para gases ultrafriosKuhn, Carlos Claiton Noschang January 2012 (has links)
Modelos exatamente solúveis para gases de férmions e bósons ultrafrios são estudados via o método do ansatz de Bethe termodinâmico. Resultados analíticos e numéricos são obtidos para o gás de Fermi de duas componentes com população de férmions não balanceada no regime atrativo em uma dimensão. Para o modelo de três componentes, soluções numéricas das equações do ansatz de Bethe termodinâmico confirmam que as expressões analíticas para os campos críticos e os diagramas de fases são muito precisas no regime de acoplamente forte. Para o regime de acoplamento fraco, derivamos as expressões analíticas para os campos críticos e os diagramas de fases e encontramos uma concordância muito boa entre os resultados analíticos e numéricos. Também verificamos que a fase triônica ´e suprimida para o regime de acoplamento fraco. Através de um estudo numérico obtivemos os diagramas de fase em regimes intermediários, e mostramos que a transição entre os regimes forte e fraco ocorre de forma suave ao variar o parâmetro de acoplamento. Apresentamos também um estudo detalhado para o gás de bósons com três componentes, obtendo expressões analíticas para quantidades físicas como densidade de partículas, compressibilidade e magnetização. A criticalidade quântica do modelo também foi investigada. / Exactly solvable models of ultracold Fermi and Bose gases are examined via the thermodynamic Bethe Ansatz method. Analytical and numerical results are obtained for the two-component one-dimensional attractive Fermi gas with population imbalance. For the three-component model, numerical solution of the thermodynamic Bethe ansatz equations confirm that the analytical expressions for the critical fields and the resulting phase diagrams at zero temperature are highly accurate in the strong coupling regime. For the weak coupling regime we derive the analytical expressions for the critical fields and the phase diagrams. Interestingly, in the weak regime the trionic phase is supressed. By means of a numerical study we obtain the phase diagrams at intermediate coupling regimes, showing that the crossover from strong to weak regimes occurs smoothly by varying the coupling parameter. We also present a detailed study of the three component Bose gas and obtain analytical expressions for physical quantities, such as the density of particles, compressibility and magnetisation. The quantum criticality of the model is also investigated.
|
29 |
Gaudin models associated to classical Lie algebrasKang Lu (9143375) 05 August 2020 (has links)
<div>We study the Gaudin model associated to Lie algebras of classical types.</div><div><br></div><div>First, we derive explicit formulas for solutions of the Bethe ansatz equations of the Gaudin model associated to the tensor product of one arbitrary finite-dimensional irreducible module and one vector representation for all simple Lie algebras of classical type. We use this result to show that the Bethe Ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We also show that except for the type D, the joint spectrum of Gaudin Hamiltonians in such tensor products is simple.</div><div><br></div><div>Second, we define a new stratification of the Grassmannian of N planes. We introduce a new subvariety of Grassmannian, called self-dual Grassmannian, using the connections between self-dual spaces and Gaudin model associated to Lie algebras of types B and C. Then we obtain a stratification of self-dual Grassmannian. </div>
|
30 |
Wave functions and scalar products in the Bethe ansatz / Fonctions d’onde et produits scalaires dans l’ansatz de BetheVallet, Benoît 10 October 2019 (has links)
Les modèles intégrables sont des modèles physiques pour lesquels certaines quantités peuvent être calculées de manière exacte, sans recours aux méthodes de perturbations. Ces modèles très particuliers suscitent un intérêt croissant en physique théorique. Les applications directes en physique de la matière condensée et les liens subtils plus récemment mis en évidence avec certaines théories de jauge supersymétriques ont motivé depuis des décennies l’élaboration d’outils mathématiques complexes. Parmi eux, l’ansatz de Bethe a joué un rôle central, et permis la diagonalisation de nombreux modèles de natures très différentes. Le premier chapitre de cette thèse est consacré à une introduction aux deux approches de l’ansatz de Bethe, dites ”en coordonnée” et ”algébrique”, dans le cadre de la chaîne de spin de Heisenberg et d’un modèle stochastique généralisant à un spin continu le modèle du Totally Asymmetric Simple Exclusion Process. Le deuxième chapitre de cette thèse présente l’ansatz algébrique modifié pour la chaîne XXX périodique. Cet ansatz modifié est proposé pour résoudre le cas de la chaîne ouverte, pour laquelle l’ansatz classique n’est plus efficace. Le produit scalaire des états de Bethe modifiés ainsi obtenus est étudié. Le troisième chapitre concerne la résolution de l’identité, et le problème fonctionnel inverse. Une expression pour les états de spin en terme des états de Bethe est présentée pour le q-TASEP, et une expression de la résolution de l’identité en terme des états de Bethe pour la chaîne de spin XXZ infinie est démontrée, faisant intervenir dans les deux cas la contribution des états liés. Enfin, le quatrième chapitre concerne les représentions en déterminant dans l’ansatz de Bethe. Une expression pour les éléments de matrice de l’opérateur Nombre de Particule pour le gaz de Bose avec interaction delta en terme d’un déterminent est démontrée, et des représentations intégrales pour les déterminants d’Izergin-Korepin et de Slavnov sont investiguées, établissant ainsi un nouveau lien formel direct entre ces deux représentations en déterminant. / Integrable models are physical models for which some quantities can be exactly obtained, without use of perturbation theory. Those very special models are source of an increasing interest in theoretical physics. The direct applications in condensed matter physics and the subtle links evidenced more recently with some supersymmetric gauges theories motivated the development of complex mathematical tools. Among these, Bethe ansatz played an important role, and provides an efficient approach for diagonalizing a lot of models of various nature. The first chapter of this thesis is devoted to the introduction to the two approaches of the Bethe ansatz, said “coordinate” and “algebraic”, in the context of the XXX Heisenberg spin chain and a continuous spin generalization of the Totally Asymmetric Simple Exclusion Process, the so called Zero-range Chipping model with factorized steady state (ZCM). The second chapter is devoted to the Modified Algebraic Bethe Ansatz in the context of the periodic XXX chain. This modified ansatz is proposed for solving the spectral problem of the open spin chain, for which the usual ansatz fails. The scalar product of the obtained modified Bethe states is studied. The third chapter concerns the resolution of the identity and the inverse functional problem. An expression for the spin states in terms of Bethe states est presented for the ZCM, and an expression for the resolution of the identity in term of Bethe states for the infinite XXZ chain is proved, involving in both cases the contribution of bound states. At last, the fourth chapter concerns determinant representations in the Bethe ansatz. An expression for the “matrix elements of the particle number operator” for the delta-Bose gas in terms of a determinant is proved, and some integral representations for the Izergin-Korepin and Slavnov determinants are investigated, then establishing a new formal link between these two determinant representations.
|
Page generated in 0.0744 seconds