Spelling suggestions: "subject:"bethe Ansatz"" "subject:"sethe Ansatz""
31 |
On the Gaudin and XXX models associated to Lie superalgebrasHuang, Chenliang 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We describe a reproduction procedure which, given a solution of the gl(m|n) Gaudin Bethe ansatz equation associated to a tensor product of polynomial modules, produces a family P of other solutions called the population.
To a population we associate a rational pseudodifferential operator R and a superspace W of rational functions.
We show that if at least one module is typical then the population P is canonically identified with the set of minimal factorizations of R and with the space of full superflags in W. We conjecture that the singular eigenvectors (up to rescaling) of all gl(m|n) Gaudin Hamiltonians are in a bijective correspondence with certain superspaces of rational functions.
We establish a duality of the non-periodic Gaudin model associated with superalgebra gl(m|n) and the non-periodic Gaudin model associated with algebra gl(k).
The Hamiltonians of the Gaudin models are given by expansions of a Berezinian of an (m+n) by (m+n) matrix in the case of gl(m|n)
and of a column determinant of a k by k matrix in the case of gl(k). We obtain our results by proving Capelli type identities for both cases and comparing the results.
We study solutions of the Bethe ansatz equations of the non-homogeneous periodic XXX model associated to super Yangian Y(gl(m|n)).
To a solution we associate a rational difference operator D and a superspace of rational functions W. We show that the set of complete factorizations of D is in canonical bijection with the variety of superflags in W and that each generic superflag defines a solution of the Bethe ansatz equation. We also give the analogous statements for the quasi-periodic supersymmetric spin chains.
|
32 |
CERTAIN ASPECTS OF QUANTUM AND CLASSICAL INTEGRABLE SYSTEMSMaksim Kosmakov (16514112) 30 August 2023 (has links)
<p>We derive new combinatorail formulas for vector-valued weight functions for the evolution modules over the Yangians Y (gln). We obtain them using the Nested Algebraic Bethe ansatz method.</p>
<p>We also describe the asymptotic behavior of the radial solutions of the negative tt∗ equation via the Riemann-Hilbert problem and the Deift-Zhou nonlinear steepest descent method.</p>
|
33 |
Analysis of the Many-Body Problem in One Dimension with Repulsive Delta-Function InteractionAlbertsson, Martin January 2014 (has links)
The repulsive delta-function interaction model in one dimension is reviewed for spinless particles and for spin-1/2 fermions. The problem of solving the differential equation related to the Schrödinger equation is reduced by the Bethe ansatz to a system of algebraic equations. The delta-function interaction is shown to have no effect on spinless fermions which therefore behave like free fermions, in agreement with Pauli's exclusion principle. The ground-state problem of spinless bosons is reduced to an inhomogeneous Fredholm equation of the second kind. In the limit of impenetrable interactions, the spinless bosons are shown to have the energy spectrum of free fermions. The model for spin-1/2 fermions is reduced by the Bethe ansatz to an eigenvalue problem of matrices of the same sizes as the irreducible representations R of the permutation group of N elements. For some R's this eigenvalue problem itself is solved by a generalized Bethe ansatz. The ground-state problem of spin-1/2 fermions is reduced to a generalized Fredholm equation.
|
34 |
Modelos de emparelhamento integráveis / Integrable pairing modelsFernandes, Walney Reis 28 May 2010 (has links)
O objetivo deste trabalho foi o estudo do Ansatz de Bethe Algébrico (ABA), que é uma técnica utilizada na obtenção dos auto-estados do hamiltoniano de inúmeros modelos da Mecânica Estatística e da Teoria Quântica de Campos. Aplicamos este procedimento na diagonalização de três modelos de spins: o modelo de Heisenberg, o modelo de Heisenberg-Sklyanin e o modelo de Heisenberg-Cherednik. Na diagonalização do primeiro modelo, não foi possível encontrar todos os auto-estados do hamiltoniano através do ABA e, durante o procedimento de obtenção das expressões analíticas, nos deparamos com um conjunto de identidades inédito na literatura. A matriz de borda do modelo de Heisenberg-Sklyanin acopla o último e o primeiro sítios, generalizando o modelo anterior, e permite estabelecer uma relação limite com outros modelos integráveis. Neste caso também não conseguimos obter todos os auto-estados utilizando a técnica do ABA. Diferentemente do que ocorreu para os primeiros modelos, o de Heisenberg-Cherednik, com acoplamentos que alternam a intensidade ao longo da cadeia de spin, apresentou um conjunto completo de auto-estados quando diagonalizado pelo ABA. / The goal of this work was to study the Algebraic Bethe ansatz (ABA), which is a technique used to obtain the eigenstates of Hamiltonian of many models of Statistical Mechanics and Quantum Field Theory. We apply this procedure to diagonalize three types of spin models: the Heisenberg model, the Heisenberg-Sklyanin model and the Heisenberg-Cherednik model. On diagonalization of the
rst model, we could not
nd all the eigenstates of Hamiltonian through ABA, and during the procedure for obtaining the analytical expressions, we face an unprecedented set of identities in literature. The Sklyanin´s boundary matrix couples the fi
rst and last sites, generalizing the previous model, and provides a limit for other integrable models. In this case also did not get all eigenstates using the technique of ABA. Unlike what happened with the
rst models, the Heisenberg-Cherednik model, with alternating couplings the intensity along the spin chain, presented a complete set of eigenstates when diagonalized by ABA.
|
35 |
Invariância conforme e modelos com expoentes críticos variáveis / Conformal invariance and statistical mechanics dels with continuonsly varying exponentesMartins, Marcio Jose 27 January 1989 (has links)
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas / This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
|
36 |
Modelos de vértices exatamente integráveis / Exactly solved vertex modelFerreira, Anderson Augusto 16 March 2005 (has links)
Nesta dissertação, mostramos as primeiras aplicações do recém criado Anstz do Produto Matricial [8] na solução exata das matrizes de transferência associadas a modelos de vértices. A integrabilidade dos modelos é obtida diagonalizando-se a matriz de transferência diagonal-para-diagonal. Foram estudados duas classes de modelos. Na primeira delas introduzimos novos modelos de vértices, que denominamos de modelos de 5 vértices interagentes. Nestes modelos os vértices além das interações usuais de vizinhos próximos, dadas pela regra do gelo, possuem também interações de natureza repulsiva ao longo da diagonal. O famoso modelo de 6 vértices é obtido num limite particular deste novo modelo. O espectro da matriz de transferência, analogamente ao que acontece no ansatz de Bethe tradicional é dado em termos de solução de equações não lineares. Um estudo analítico e numérico destas equações foi feito para o modelo de 6 vértices que está contido nesta primeira classes de modelos. Tais resultados, juntamente com as idéias de invariância conforme, nos permitiram estudar o modelo em seu regime crítico. A segunda classe de modelos que estudamos foram os modelos de 10 vértices que satisfazem às regras do gelo. Obtivemos todos os possíveis modelos exatamente integráveis desta classe, reobtendo resultados da literatura bem como novos resultados. / In this dissertation we present the first application of a recent introduces Matrix Product Ansatz [8], in the exact solution of the transfer matrices associated to vertex models. The exact integrability is obtained through the diagonalization of the diagonal-to-diagonal transfer matrix. We studied two classes of models. In the first one we introduced new vertex models, that we call as interacting 5 vertex models. On these models beyond the nearest-neighbor interactions among the vertices, imposed by the ice rule, they also have repulsive interactions along the diagonal. The famous 6-vertex model is just a special case this class of models. The eigenspectrum of this transfer matrix, analogously as in the traditional Bethe ansatz, is obtained in terms of the roots of nonlinear equation. An analytical and numerical study of these equations we done on the first class. These results together with the machinery coming from conformal invariance allow us the study the model on its critical region. The second class of models we considered were the 10 vertex models that satisfy ice rules we obtained all the possible exact integrable models on this class, rederiving earlier results on the literature as were producing new ones.
|
37 |
Combinatorics of Gaudin systems : cactus groups and the RSK algorithmWhite, Noah Alexander Matthias January 2016 (has links)
This thesis explores connections between the Gaudin Hamiltonians in type A and the combinatorics of tableaux. The cactus group acts on standard tableaux via the Schützenberger involution. We show in this thesis that the action of the cactus group on standard tableaux can be recovered as a monodromy action of the cactus group on the simultaneous spectrum of the Gaudin Hamiltonians. More precisely, we consider the action of the Bethe algebra, which contains the Gaudin Hamiltonians, on the multiplicity space of a tensor product of irreducible glr-modules. The spectrum of this algebra forms a flat and finite family over M0,n+1(C). We use work of Mukhin, Tarasov and Varchenko, who link this spectrum to certain Schubert intersections, and work of Speyer, who extends these Schubert intersections to a flat and finite map over the entire moduli space of stable curves M0,n+1(C). We show the monodromy over the real points M0,n+1(R) can be identified with the action of the cactus group on a tensor product of irreducible glr-crystals. Furthermore we show this identification is canonical with respect to natural labelling sets on both sides.
|
38 |
Invariância conforme e modelos com expoentes críticos variáveis / Conformal invariance and statistical mechanics dels with continuonsly varying exponentesMarcio Jose Martins 27 January 1989 (has links)
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas / This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
|
39 |
Modelos de vértices exatamente integráveis / Exactly solved vertex modelAnderson Augusto Ferreira 16 March 2005 (has links)
Nesta dissertação, mostramos as primeiras aplicações do recém criado Anstz do Produto Matricial [8] na solução exata das matrizes de transferência associadas a modelos de vértices. A integrabilidade dos modelos é obtida diagonalizando-se a matriz de transferência diagonal-para-diagonal. Foram estudados duas classes de modelos. Na primeira delas introduzimos novos modelos de vértices, que denominamos de modelos de 5 vértices interagentes. Nestes modelos os vértices além das interações usuais de vizinhos próximos, dadas pela regra do gelo, possuem também interações de natureza repulsiva ao longo da diagonal. O famoso modelo de 6 vértices é obtido num limite particular deste novo modelo. O espectro da matriz de transferência, analogamente ao que acontece no ansatz de Bethe tradicional é dado em termos de solução de equações não lineares. Um estudo analítico e numérico destas equações foi feito para o modelo de 6 vértices que está contido nesta primeira classes de modelos. Tais resultados, juntamente com as idéias de invariância conforme, nos permitiram estudar o modelo em seu regime crítico. A segunda classe de modelos que estudamos foram os modelos de 10 vértices que satisfazem às regras do gelo. Obtivemos todos os possíveis modelos exatamente integráveis desta classe, reobtendo resultados da literatura bem como novos resultados. / In this dissertation we present the first application of a recent introduces Matrix Product Ansatz [8], in the exact solution of the transfer matrices associated to vertex models. The exact integrability is obtained through the diagonalization of the diagonal-to-diagonal transfer matrix. We studied two classes of models. In the first one we introduced new vertex models, that we call as interacting 5 vertex models. On these models beyond the nearest-neighbor interactions among the vertices, imposed by the ice rule, they also have repulsive interactions along the diagonal. The famous 6-vertex model is just a special case this class of models. The eigenspectrum of this transfer matrix, analogously as in the traditional Bethe ansatz, is obtained in terms of the roots of nonlinear equation. An analytical and numerical study of these equations we done on the first class. These results together with the machinery coming from conformal invariance allow us the study the model on its critical region. The second class of models we considered were the 10 vertex models that satisfy ice rules we obtained all the possible exact integrable models on this class, rederiving earlier results on the literature as were producing new ones.
|
40 |
Modelos de emparelhamento integráveis / Integrable pairing modelsWalney Reis Fernandes 28 May 2010 (has links)
O objetivo deste trabalho foi o estudo do Ansatz de Bethe Algébrico (ABA), que é uma técnica utilizada na obtenção dos auto-estados do hamiltoniano de inúmeros modelos da Mecânica Estatística e da Teoria Quântica de Campos. Aplicamos este procedimento na diagonalização de três modelos de spins: o modelo de Heisenberg, o modelo de Heisenberg-Sklyanin e o modelo de Heisenberg-Cherednik. Na diagonalização do primeiro modelo, não foi possível encontrar todos os auto-estados do hamiltoniano através do ABA e, durante o procedimento de obtenção das expressões analíticas, nos deparamos com um conjunto de identidades inédito na literatura. A matriz de borda do modelo de Heisenberg-Sklyanin acopla o último e o primeiro sítios, generalizando o modelo anterior, e permite estabelecer uma relação limite com outros modelos integráveis. Neste caso também não conseguimos obter todos os auto-estados utilizando a técnica do ABA. Diferentemente do que ocorreu para os primeiros modelos, o de Heisenberg-Cherednik, com acoplamentos que alternam a intensidade ao longo da cadeia de spin, apresentou um conjunto completo de auto-estados quando diagonalizado pelo ABA. / The goal of this work was to study the Algebraic Bethe ansatz (ABA), which is a technique used to obtain the eigenstates of Hamiltonian of many models of Statistical Mechanics and Quantum Field Theory. We apply this procedure to diagonalize three types of spin models: the Heisenberg model, the Heisenberg-Sklyanin model and the Heisenberg-Cherednik model. On diagonalization of the
rst model, we could not
nd all the eigenstates of Hamiltonian through ABA, and during the procedure for obtaining the analytical expressions, we face an unprecedented set of identities in literature. The Sklyanin´s boundary matrix couples the fi
rst and last sites, generalizing the previous model, and provides a limit for other integrable models. In this case also did not get all eigenstates using the technique of ABA. Unlike what happened with the
rst models, the Heisenberg-Cherednik model, with alternating couplings the intensity along the spin chain, presented a complete set of eigenstates when diagonalized by ABA.
|
Page generated in 0.0539 seconds