Spelling suggestions: "subject:"integrable models"" "subject:"integrables models""
1 |
Yang-Baxter equations for systems with boundaries and defectsAndersson, Mattias January 2009 (has links)
The Yang-Baxter equation appear in various situations in physics and mathematics. For example it arises as a consistency condition in integrable models. The reflection equation (boundary Yang-Baxter equation) is a generalization of the Yang-Baxter equation to systems with a boundary. A further generalization to systems with defects which admits both reflection and transmission can be made, which results in reflection-transmission Yang-Baxter equations.In this thesis the Yang-Baxter equation and the reflection equation are presented. Representations of the Temperley-Lieb algebra and the blob algebra are used to construct matrices which solve the respective equations. For the reflection-transmission Yang-Baxter equations, steps toward a solution are taken by using a similar approach as for the first two cases, namely by finding an algebra whose representations can be used to construct matrices which solve the equations.
|
2 |
Bethe Ansatz and Open Spin-1/2 XXZ Quantum Spin ChainMurgan, Rajan 12 April 2008 (has links)
The open spin-1/2 XXZ quantum spin chain with general integrable boundary terms is a fundamental integrable model. Finding a Bethe Ansatz solution for this model has been a subject of intensive research for many years. Such solutions for other simpler spin chain models have been shown to be essential for calculating various physical quantities, e.g., spectrum, scattering amplitudes, finite size corrections, anomalous dimensions of certain field operators in gauge field theories, etc. The first part of this dissertation focuses on Bethe Ansatz solutions for open spin chains with nondiagonal boundary terms. We present such solutions for some special cases where the Hamiltonians contain two free boundary parameters. The functional relation approach is utilized to solve the models at roots of unity, i.e., for bulk anisotropy values eta = i pi/(p+1) where p is a positive integer. This approach is then used to solve open spin chain with the most general integrable boundary terms with six boundary parameters, also at roots of unity, with no constraint among the boundary parameters. The second part of the dissertation is entirely on applications of the newly obtained Bethe Ansatz solutions. We first analyze the ground state and compute the boundary energy (order 1 correction) for all the cases mentioned above. We extend the analysis to study certain excited states for the two-parameter case. We investigate low-lying excited states with one hole and compute the corresponding Casimir energy (order 1/N correction) and conformal dimensions for these states. These results are later generalized to many-hole states. Finally, we compute the boundary S-matrix for one-hole excitations and show that the scattering amplitudes found correspond to the well known results of Ghoshal and Zamolodchikov for the boundary sine-Gordon model provided certain identifications between the lattice parameters (from the spin chain Hamiltonian) and infrared (IR) parameters (from the boundary sine-Gordon S-matrix) are made.
|
3 |
Estudo de colisões kink-antikink e espalhamento por contorno / Study of kink-antikink collisions and contour scatteringLima, Fred Jorge Carvalho 06 December 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-02T17:36:04Z
No. of bitstreams: 1
FredLima.pdf: 2679751 bytes, checksum: 8a9326e9ee9ea66d443e002ab6b30712 (MD5) / Made available in DSpace on 2017-06-02T17:36:04Z (GMT). No. of bitstreams: 1
FredLima.pdf: 2679751 bytes, checksum: 8a9326e9ee9ea66d443e002ab6b30712 (MD5)
Previous issue date: 2016-12-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this dissertation is performed a study of collisions of topological defects in both integrable and non-integrable models of (1+1) dimensional scalar real elds. As integrable theory it is studied the sine-Gordon model; as non-integrable theories it is studied the φ4, double sine-Gordon and φ6 models. The research of collision is make through numerical solution of the motion equation. For this purpose, rst are obtained the topological solutions for each model by using the Bolgomol'nyi-Prasad-Sommerfeld (BPS) formalism. We explained the results analytically through of a exchange energy mechanism, which is associated to the normal vibrational modes of kinks solutions. This mechanism explains the large di erence between dynamics of the integrable and non-integrable models. It is also carried out a study of kinks collision for both φ4 and φ6 on a half line with a Neumann boundary condition. The results show a variety of new features which do not observed for kink-antikink collisions on full line. / Nesta dissertação é realizado um estudo de colisões de defeitos topológicos em modelos de campos escalares reais de natureza integrável e não-integrável, em (1 + 1) dimensões. Como teoria integrável, estuda-se o modelo sine-Gordon; como teorias não-integráveis estuda-se os modelos φ4, duplo sine-Gordon e φ6. O estudo de colisões é realizado através da solução numérica da equação de movimento. Para tanto, as soluções topológicas para cada modelo são primeiramente encontradas por meio do formalismo de Bolgomol'nyi-Prasad-Sommerfeld (BPS). Os resultados são explicados qualitativamente através de um mecanismo de troca de energia que envolve os modos normais de vibração das soluções kinks. Tal mecanismo elucida a grande diferença na dinâmica de modelos integráveis e não-integráveis. Também é realizado um estudo de colisões de kinks em uma semi linha, com condição de contorno de Neumann, para os modelo φ4 e φ6. Os resultados mostram uma variedade de novos comportamentos que não são observados em colisões kink-antikink no espaço ilimitado.
|
4 |
Modelos integráveis multicarregados e integrabilidade no plano não comutativo /Cabrera Carnero, Iraida. January 2003 (has links)
Orientador: José Francisco Gomes / Banca: Galen Mihaylov Sotkov / Banca: Abraham Hirsz Zimerman / Banca: Paulo Teotônio Sobrinho / Banca: Márcio José Martins / Resumo: Nesta fase construísmo e estudamos uma nova classe de modelos integráveis (relativístico e não relativístico) em duas dimensões, associados à álgebra afim 'A IND.3 POT.(1)'. Estes modelos apresentam sólitons tipológicos os quais portam duas cargas elétricas U(1) X U(1). O modelo de Toda afim (relativístico) é construído a partir do modelo WZNW mediante a calibração da ação Swznw e corresponde ao primeiro membro de grau negativo q = -1 de uma hierarquia de modelos cKP do tipo dyon. O modelo mais simples não relativístico dentro desta hierarquia corresponde ao grau q = 2 positivo. As soluções de 1-sóliton para ambos modelos foram construídas e relações explícitas entre ambas soluções (assim como entre as cargas conservadas) foram encontradas. Outro modelo integrável com simetrias não abelianas locais SL(2) X U(1) é introduzido. Numa aproximação à integrabilidade em espaços não-comutativos estudamos generalizações não comutativas no plano dos modelos integráveis bidimensionais sine-, sinh-Gordon e U(N) Quiral Principal. Calculando a amplitude de espalhamento à nível de árvore de um processo de produção de partículas provamos que a versão não-comutativa do modelo de sinh-Gordon que se obtém mediante a deformação Moyal da respectiva ação não é integrável. Por outro lado, a incorporação de vínculos adicionais que são obtidos a partir da generalização da condição de curvatura nula, tornam o modelo integrável. O modelo Quiral Principal generalizado a partir da deformação Moyal da ação, preserva a sua integrabilidade, ao contrário dos modelos sinh-Gordon e sine-Gordon. / Abstract: In this thesis we have constructed and studied a new class of two-dimensional integrable models (relativistic and nonrelativistic), related to the affine algebra 'A IND.3 POT.(1)'. These models admit U(1) X U(1) charged topological solitons. The affine Toda relativistic model is constructed from the gauged WZNW action and corresponds to the first negative grade q = -1 member of a dyonic hierarchy of cKP models. The simplest nonrelativistic model corresponds to the positive grade q = 2 of this hierarchy. The 1-soliton solutions for both models were constructed and explicit relations between them (and the conserved charges as well) were found. Another integrable model with local nonabelian SL(2) X U(1) simetries is introduced. In the context of integrability on noncommutative spaces, we have studied noncommutative generalizations on the plane of the two-dimensional integrable models sine-, sinh-Gordon and U(N) Principal Quiral. By computing for the sinh-Gordon model, the tree-level amplitude of a process of production of particles, we proved that the noncommutative generalization of this model that it is obtained by the Moyal deformation of the corresponding action is not integrable. On the other hand, the addition of extra constraints, obtained by the generalization of the zero-curvature method, renders the integrability of the model. The generalization of the Principal Quiral model by the Moyal deformation of the action preserves the integrability, contrary to the previous case / Doutor
|
5 |
Modelos integráveis multicarregados e integrabilidade no plano não comutativoCabrera Carnero, Iraida [UNESP] 02 1900 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:32:10Z (GMT). No. of bitstreams: 0
Previous issue date: 2003-02Bitstream added on 2014-06-13T20:23:07Z : No. of bitstreams: 1
cabreracarnero_i_dr_ift.pdf: 1015322 bytes, checksum: 915c6683e6c1c022f54ca1d9f5a03904 (MD5) / Nesta fase construísmo e estudamos uma nova classe de modelos integráveis (relativístico e não relativístico) em duas dimensões, associados à álgebra afim 'A IND.3 POT.(1)'. Estes modelos apresentam sólitons tipológicos os quais portam duas cargas elétricas U(1) X U(1). O modelo de Toda afim (relativístico) é construído a partir do modelo WZNW mediante a calibração da ação Swznw e corresponde ao primeiro membro de grau negativo q = -1 de uma hierarquia de modelos cKP do tipo dyon. O modelo mais simples não relativístico dentro desta hierarquia corresponde ao grau q = 2 positivo. As soluções de 1-sóliton para ambos modelos foram construídas e relações explícitas entre ambas soluções (assim como entre as cargas conservadas) foram encontradas. Outro modelo integrável com simetrias não abelianas locais SL(2) X U(1) é introduzido. Numa aproximação à integrabilidade em espaços não-comutativos estudamos generalizações não comutativas no plano dos modelos integráveis bidimensionais sine-, sinh-Gordon e U(N) Quiral Principal. Calculando a amplitude de espalhamento à nível de árvore de um processo de produção de partículas provamos que a versão não-comutativa do modelo de sinh-Gordon que se obtém mediante a deformação Moyal da respectiva ação não é integrável. Por outro lado, a incorporação de vínculos adicionais que são obtidos a partir da generalização da condição de curvatura nula, tornam o modelo integrável. O modelo Quiral Principal generalizado a partir da deformação Moyal da ação, preserva a sua integrabilidade, ao contrário dos modelos sinh-Gordon e sine-Gordon. / In this thesis we have constructed and studied a new class of two-dimensional integrable models (relativistic and nonrelativistic), related to the affine algebra 'A IND.3 POT.(1)'. These models admit U(1) X U(1) charged topological solitons. The affine Toda relativistic model is constructed from the gauged WZNW action and corresponds to the first negative grade q = -1 member of a dyonic hierarchy of cKP models. The simplest nonrelativistic model corresponds to the positive grade q = 2 of this hierarchy. The 1-soliton solutions for both models were constructed and explicit relations between them (and the conserved charges as well) were found. Another integrable model with local nonabelian SL(2) X U(1) simetries is introduced. In the context of integrability on noncommutative spaces, we have studied noncommutative generalizations on the plane of the two-dimensional integrable models sine-, sinh-Gordon and U(N) Principal Quiral. By computing for the sinh-Gordon model, the tree-level amplitude of a process of production of particles, we proved that the noncommutative generalization of this model that it is obtained by the Moyal deformation of the corresponding action is not integrable. On the other hand, the addition of extra constraints, obtained by the generalization of the zero-curvature method, renders the integrability of the model. The generalization of the Principal Quiral model by the Moyal deformation of the action preserves the integrability, contrary to the previous case
|
6 |
Modelos de emparelhamento integráveis / Integrable pairing modelsFernandes, Walney Reis 28 May 2010 (has links)
O objetivo deste trabalho foi o estudo do Ansatz de Bethe Algébrico (ABA), que é uma técnica utilizada na obtenção dos auto-estados do hamiltoniano de inúmeros modelos da Mecânica Estatística e da Teoria Quântica de Campos. Aplicamos este procedimento na diagonalização de três modelos de spins: o modelo de Heisenberg, o modelo de Heisenberg-Sklyanin e o modelo de Heisenberg-Cherednik. Na diagonalização do primeiro modelo, não foi possível encontrar todos os auto-estados do hamiltoniano através do ABA e, durante o procedimento de obtenção das expressões analíticas, nos deparamos com um conjunto de identidades inédito na literatura. A matriz de borda do modelo de Heisenberg-Sklyanin acopla o último e o primeiro sítios, generalizando o modelo anterior, e permite estabelecer uma relação limite com outros modelos integráveis. Neste caso também não conseguimos obter todos os auto-estados utilizando a técnica do ABA. Diferentemente do que ocorreu para os primeiros modelos, o de Heisenberg-Cherednik, com acoplamentos que alternam a intensidade ao longo da cadeia de spin, apresentou um conjunto completo de auto-estados quando diagonalizado pelo ABA. / The goal of this work was to study the Algebraic Bethe ansatz (ABA), which is a technique used to obtain the eigenstates of Hamiltonian of many models of Statistical Mechanics and Quantum Field Theory. We apply this procedure to diagonalize three types of spin models: the Heisenberg model, the Heisenberg-Sklyanin model and the Heisenberg-Cherednik model. On diagonalization of the
rst model, we could not
nd all the eigenstates of Hamiltonian through ABA, and during the procedure for obtaining the analytical expressions, we face an unprecedented set of identities in literature. The Sklyanin´s boundary matrix couples the fi
rst and last sites, generalizing the previous model, and provides a limit for other integrable models. In this case also did not get all eigenstates using the technique of ABA. Unlike what happened with the
rst models, the Heisenberg-Cherednik model, with alternating couplings the intensity along the spin chain, presented a complete set of eigenstates when diagonalized by ABA.
|
7 |
Invariância conforme e modelos com expoentes críticos variáveis / Conformal invariance and statistical mechanics dels with continuonsly varying exponentesMartins, Marcio Jose 27 January 1989 (has links)
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas / This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
|
8 |
Modèles intégrables avec fonction twist et modèles de Gaudin affines / Integrable models with twist function and affine Gaudin modelsLacroix, Sylvain 04 July 2018 (has links)
Cette thèse a pour sujet une classe de théories des champs intégrables appelées modèles avec fonction twist. Les principaux exemples de tels modèles sont les modèles sigma non-linéaires intégrables, tel le Modèle Principal Chiral, et leurs déformations. Un premier résultat obtenu est la preuve que le modèle dit de Bi-Yang-Baxter, qui est une déformation à deux paramètres du Modèle Principal Chiral, est lui aussi un modèle avec fonction twist. Il est ensuite montré que les déformations de type Yang-Baxter modifient certaines symétries globales du modèle non déformé en symétries de Poisson-Lie. Un autre chapitre concerne la construction d'une infinité de charges locales en involution pour tous les modèles sigma intégrables et leurs déformations : ce résultat repose sur le formalisme général partagé par tous ces modèles en tant que théories des champs avec fonction twist.La seconde partie de la thèse a pour sujet les modèles de Gaudin. Ceux-ci sont des modèles intégrables associés à des algèbres de Lie. En particulier, les théories des champs avec fonction twist sont liées aux modèles de Gaudin associés à des algèbres de Lie affines. Une approche standard pour l'étude du spectre des modèles de Gaudin quantiques sur des algèbres finies est celle de Feigin-Frenkel-Reshetikhin. Dans cette thèse, des généralisations de cette approche sont conjecturées, motivées et testées. L'une d'elles concerne les modèles de Gaudin finis dits cyclotomiques. La seconde porte sur les modèles de Gaudin associés à des algèbres affines. / This thesis deals with a class of integrable field theories called models with twist function. The main examples of such models are integrable non-linear sigma models, such as the Principal Chiral Model, and their deformations. A first obtained result is the proof that the so-called Bi-Yang-Baxter model, which is a two-parameter deformation of the Principal Chiral Model, is also a model with twist function. It is then shown that Yang-Baxter type deformations modify certain global symmetries of the undeformed model into Poisson-Lie symmetries. Another chapter concerns the construction of an infinite number of local charges in involution for all integrable sigma models and their deformations: this result is based on the general formalism shared by all these models as field theories with twist function.The second part of the thesis concerns Gaudin models. These are integrable models associated with Lie algebras. In particular, field theories with twist function are related to Gaudin models associated with affine Lie algebras. A standard approach for studying the spectrum of quantum Gaudin models over finite algebras is the one of Feigin-Frenkel-Reshetikhin. In this thesis, generalisations of this approach are conjectured, motivated and tested. One of them deals with the so-called cyclotomic finite Gaudin models. The second one concerns the Gaudin models associated with affine Lie algebras.
|
9 |
Invariância conforme e modelos com expoentes críticos variáveis / Conformal invariance and statistical mechanics dels with continuonsly varying exponentesMarcio Jose Martins 27 January 1989 (has links)
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas / This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
|
10 |
Modelos de emparelhamento integráveis / Integrable pairing modelsWalney Reis Fernandes 28 May 2010 (has links)
O objetivo deste trabalho foi o estudo do Ansatz de Bethe Algébrico (ABA), que é uma técnica utilizada na obtenção dos auto-estados do hamiltoniano de inúmeros modelos da Mecânica Estatística e da Teoria Quântica de Campos. Aplicamos este procedimento na diagonalização de três modelos de spins: o modelo de Heisenberg, o modelo de Heisenberg-Sklyanin e o modelo de Heisenberg-Cherednik. Na diagonalização do primeiro modelo, não foi possível encontrar todos os auto-estados do hamiltoniano através do ABA e, durante o procedimento de obtenção das expressões analíticas, nos deparamos com um conjunto de identidades inédito na literatura. A matriz de borda do modelo de Heisenberg-Sklyanin acopla o último e o primeiro sítios, generalizando o modelo anterior, e permite estabelecer uma relação limite com outros modelos integráveis. Neste caso também não conseguimos obter todos os auto-estados utilizando a técnica do ABA. Diferentemente do que ocorreu para os primeiros modelos, o de Heisenberg-Cherednik, com acoplamentos que alternam a intensidade ao longo da cadeia de spin, apresentou um conjunto completo de auto-estados quando diagonalizado pelo ABA. / The goal of this work was to study the Algebraic Bethe ansatz (ABA), which is a technique used to obtain the eigenstates of Hamiltonian of many models of Statistical Mechanics and Quantum Field Theory. We apply this procedure to diagonalize three types of spin models: the Heisenberg model, the Heisenberg-Sklyanin model and the Heisenberg-Cherednik model. On diagonalization of the
rst model, we could not
nd all the eigenstates of Hamiltonian through ABA, and during the procedure for obtaining the analytical expressions, we face an unprecedented set of identities in literature. The Sklyanin´s boundary matrix couples the fi
rst and last sites, generalizing the previous model, and provides a limit for other integrable models. In this case also did not get all eigenstates using the technique of ABA. Unlike what happened with the
rst models, the Heisenberg-Cherednik model, with alternating couplings the intensity along the spin chain, presented a complete set of eigenstates when diagonalized by ABA.
|
Page generated in 0.0729 seconds