Spelling suggestions: "subject:"modelos integráveis"" "subject:"modelos desintegráveis""
1 |
Estudo de colisões kink-antikink e espalhamento por contorno / Study of kink-antikink collisions and contour scatteringLima, Fred Jorge Carvalho 06 December 2016 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-06-02T17:36:04Z
No. of bitstreams: 1
FredLima.pdf: 2679751 bytes, checksum: 8a9326e9ee9ea66d443e002ab6b30712 (MD5) / Made available in DSpace on 2017-06-02T17:36:04Z (GMT). No. of bitstreams: 1
FredLima.pdf: 2679751 bytes, checksum: 8a9326e9ee9ea66d443e002ab6b30712 (MD5)
Previous issue date: 2016-12-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / In this dissertation is performed a study of collisions of topological defects in both integrable and non-integrable models of (1+1) dimensional scalar real elds. As integrable theory it is studied the sine-Gordon model; as non-integrable theories it is studied the φ4, double sine-Gordon and φ6 models. The research of collision is make through numerical solution of the motion equation. For this purpose, rst are obtained the topological solutions for each model by using the Bolgomol'nyi-Prasad-Sommerfeld (BPS) formalism. We explained the results analytically through of a exchange energy mechanism, which is associated to the normal vibrational modes of kinks solutions. This mechanism explains the large di erence between dynamics of the integrable and non-integrable models. It is also carried out a study of kinks collision for both φ4 and φ6 on a half line with a Neumann boundary condition. The results show a variety of new features which do not observed for kink-antikink collisions on full line. / Nesta dissertação é realizado um estudo de colisões de defeitos topológicos em modelos de campos escalares reais de natureza integrável e não-integrável, em (1 + 1) dimensões. Como teoria integrável, estuda-se o modelo sine-Gordon; como teorias não-integráveis estuda-se os modelos φ4, duplo sine-Gordon e φ6. O estudo de colisões é realizado através da solução numérica da equação de movimento. Para tanto, as soluções topológicas para cada modelo são primeiramente encontradas por meio do formalismo de Bolgomol'nyi-Prasad-Sommerfeld (BPS). Os resultados são explicados qualitativamente através de um mecanismo de troca de energia que envolve os modos normais de vibração das soluções kinks. Tal mecanismo elucida a grande diferença na dinâmica de modelos integráveis e não-integráveis. Também é realizado um estudo de colisões de kinks em uma semi linha, com condição de contorno de Neumann, para os modelo φ4 e φ6. Os resultados mostram uma variedade de novos comportamentos que não são observados em colisões kink-antikink no espaço ilimitado.
|
Page generated in 0.0599 seconds