Spelling suggestions: "subject:"bethe Ansatz"" "subject:"sethe Ansatz""
11 |
Ansatz de Bethe e princípio variacional aplicados a sistemas de poucas partículas interagentes em um potencial harmônico unidimensionalLima, Diefferson Rubeni da Rosa de January 2014 (has links)
Neste trabalho nós desenvolvemos uma abordagem baseada no método do ansatz de Bethe e no princípio variacional para encontrar a energia do estado fundamental para sistemas unidimensionais formados por um número pequeno de particulas interagentes. Particularmente, nós investigamos sistemas de duas e três partículas interagentes aprisionados em uma armadilha harmônica unidimensional. Nossos resultados apresentam uma boa concordância com as soluções analíticas e numéricas existentes na literatura. Também determinamos a densidade de probabilidade e a função de correlação de pares do sistema. Nossa abordagem é bastante genérica e permite o estudo de sistemas de poucas partículas mais complexos, alguns de interesse experimental, que não apresentam solução analítica. / In this work we develop an approach based on the Bethe ansatz method and the variational principle to nd the ground state energy for a one-dimensional few-body system. We investigate a system of two and three interacting particles con ned in a one-dimensional harmonic trap. Our results show a good agreement with existing analytical and numerical results. We also determine the probability density and the pair correlation function of the system. Our approach is very general and enables the study of more complex few-body systems, some of them of experimental interest, where no exact analytical solution is available.
|
12 |
Ansatz de Bethe e princípio variacional aplicados a sistemas de poucas partículas interagentes em um potencial harmônico unidimensionalLima, Diefferson Rubeni da Rosa de January 2014 (has links)
Neste trabalho nós desenvolvemos uma abordagem baseada no método do ansatz de Bethe e no princípio variacional para encontrar a energia do estado fundamental para sistemas unidimensionais formados por um número pequeno de particulas interagentes. Particularmente, nós investigamos sistemas de duas e três partículas interagentes aprisionados em uma armadilha harmônica unidimensional. Nossos resultados apresentam uma boa concordância com as soluções analíticas e numéricas existentes na literatura. Também determinamos a densidade de probabilidade e a função de correlação de pares do sistema. Nossa abordagem é bastante genérica e permite o estudo de sistemas de poucas partículas mais complexos, alguns de interesse experimental, que não apresentam solução analítica. / In this work we develop an approach based on the Bethe ansatz method and the variational principle to nd the ground state energy for a one-dimensional few-body system. We investigate a system of two and three interacting particles con ned in a one-dimensional harmonic trap. Our results show a good agreement with existing analytical and numerical results. We also determine the probability density and the pair correlation function of the system. Our approach is very general and enables the study of more complex few-body systems, some of them of experimental interest, where no exact analytical solution is available.
|
13 |
Ansatz de Bethe e princípio variacional aplicados a sistemas de poucas partículas interagentes em um potencial harmônico unidimensionalLima, Diefferson Rubeni da Rosa de January 2014 (has links)
Neste trabalho nós desenvolvemos uma abordagem baseada no método do ansatz de Bethe e no princípio variacional para encontrar a energia do estado fundamental para sistemas unidimensionais formados por um número pequeno de particulas interagentes. Particularmente, nós investigamos sistemas de duas e três partículas interagentes aprisionados em uma armadilha harmônica unidimensional. Nossos resultados apresentam uma boa concordância com as soluções analíticas e numéricas existentes na literatura. Também determinamos a densidade de probabilidade e a função de correlação de pares do sistema. Nossa abordagem é bastante genérica e permite o estudo de sistemas de poucas partículas mais complexos, alguns de interesse experimental, que não apresentam solução analítica. / In this work we develop an approach based on the Bethe ansatz method and the variational principle to nd the ground state energy for a one-dimensional few-body system. We investigate a system of two and three interacting particles con ned in a one-dimensional harmonic trap. Our results show a good agreement with existing analytical and numerical results. We also determine the probability density and the pair correlation function of the system. Our approach is very general and enables the study of more complex few-body systems, some of them of experimental interest, where no exact analytical solution is available.
|
14 |
Dynamical correlations of S=1/2 quantum spin chainsPereira, Rodrigo Gonçalves 11 1900 (has links)
Spin-1/2 chains demonstrate some of the striking effects of interactions and quantum fluctuations in one-dimensional systems. The XXZ model has been used to study the unusual properties of anisotropic spin chains in an external magnetic field. The zero temperature phase diagram for this model exhibits a critical or quasi-long-range-ordered phase which is a realization of a Luttinger liquid. While many static properties of spin-1/2 chains have been explained by combinations of analytical techniques such as bosonization and Bethe ansatz, the standard approach fails in the calculation of some time-dependent correlation functions. I present a study of the longitudinal dynamical structure factor for the XXZ model in the critical regime. I show that an approximation for the line shape of the dynamical structure factor in the limit of small momentum transfer can be obtained by going beyond the Luttinger model and treating irrelevant operators associated with band curvature effects. This approach is able to describe the width of the on-shell peak and the high-frequency tail at finite magnetic field. Integrability is shown to affect the low-energy effective model at zero field, with consequences for the line shape. The power-law singularities at the thresholds of the particle-hole continuum are investigated using an analogy with the X-ray edge problem. Using methods of Bethe ansatz and conformal field theory, I compute the exact exponents for the edge singularities of the dynamical structure factor. The same methods are used to study the long-time asymptotic behavior of the spin self-correlation function, which is shown to be dominated by a high-energy excitation. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
|
15 |
Gaudin models associated to classical Lie algebrasLu, Kang 08 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the Gaudin model associated to Lie algebras of classical types.
First, we derive explicit formulas for solutions of the Bethe ansatz equations of the Gaudin model associated to the tensor product of one arbitrary finite-dimensional irreducible module and one vector representation for all simple Lie algebras of classical type. We use this result to show that the Bethe Ansatz is complete in any tensor product where all but one factor are vector representations and the evaluation parameters are generic. We also show that except for the type D, the joint spectrum of Gaudin Hamiltonians in such tensor products is simple.
Second, we define a new stratification of the Grassmannian of N planes. We introduce a new subvariety of Grassmannian, called self-dual Grassmannian, using the connections between self-dual spaces and Gaudin model associated to Lie algebras of types B and C. Then we obtain a stratification of self-dual Grassmannian.
|
16 |
Ensaios analíticos e numéricos de processos estocásticos unidimensionais / Analytic and numeric essays on one-dimensional stochastic processesFerreira, Anderson Augusto 31 March 2009 (has links)
Nesta presente tese, abordaremos três problemas sobre processos estocásticos unidimensionais governados pela equação mestra. Através do Ansatz do Produto Matricial (MPA) determinaremos as condições suficientes para garantir a integrabilidade de um novo processo de difusão num meio com impurezas. Investigando o espectro de tal modelo, computaremos o expoente crítico z que determina como os observáveis atingem o estado estacionário. Em seguida, estudaremos o clássico modelo de 6-vértices bidimensional definido na matriz de transferência diagonal-diagonal, como um modelo de trafego unidimensional com dinâmica síncrona e assíncrona. E para concluir nosso trabalho, investigaremos alguns modelos de processos de contato com difusão, utilizando a teoria de Campo Médio em Cluster. / In this thesis, we discuss three problems on dimensional stochastic processes governed by master equation. By Product Matrix Ansatz (MPA) we determine the conditions sufficient to ensure integrability of a new process of diffusion in a medium with impurities. Investigating the spectrum of this model, we compute the critical exponent z that determines how the observable flow to stationary state. In the folowing, we study the classical 6-vertex model defined in two-dimensional diagonal-diagonal matrix transfer as a unidimensional model of traffic with synchronous and asynchronous dinamics. And to finish our work, we study models of diffusion processes of contact, using the theory of Cluster Mean-Field
|
17 |
Ensaios analíticos e numéricos de processos estocásticos unidimensionais / Analytic and numeric essays on one-dimensional stochastic processesAnderson Augusto Ferreira 31 March 2009 (has links)
Nesta presente tese, abordaremos três problemas sobre processos estocásticos unidimensionais governados pela equação mestra. Através do Ansatz do Produto Matricial (MPA) determinaremos as condições suficientes para garantir a integrabilidade de um novo processo de difusão num meio com impurezas. Investigando o espectro de tal modelo, computaremos o expoente crítico z que determina como os observáveis atingem o estado estacionário. Em seguida, estudaremos o clássico modelo de 6-vértices bidimensional definido na matriz de transferência diagonal-diagonal, como um modelo de trafego unidimensional com dinâmica síncrona e assíncrona. E para concluir nosso trabalho, investigaremos alguns modelos de processos de contato com difusão, utilizando a teoria de Campo Médio em Cluster. / In this thesis, we discuss three problems on dimensional stochastic processes governed by master equation. By Product Matrix Ansatz (MPA) we determine the conditions sufficient to ensure integrability of a new process of diffusion in a medium with impurities. Investigating the spectrum of this model, we compute the critical exponent z that determines how the observable flow to stationary state. In the folowing, we study the classical 6-vertex model defined in two-dimensional diagonal-diagonal matrix transfer as a unidimensional model of traffic with synchronous and asynchronous dinamics. And to finish our work, we study models of diffusion processes of contact, using the theory of Cluster Mean-Field
|
18 |
On the One-Loop Dilatation Operator of Strongly-Twisted N=4 Super Yang-Mills TheoryZippelius, Friedrich Leonard 24 April 2020 (has links)
In den letzten beiden Jahrzehnten hat sich N=4 Super Yang-Mills Theorie (SYM) als vergleichsweise einfache wechselwirkende Quantenfeldtheorie etabliert. Es konnte gezeigt werden, dass N=4 SYM im sogenannten planaren Limes eine integrable konforme Feldtheorie ist. Diese Erkenntnis wurde im Rahmen der Lösung des Spektralproblems gewonnen, das als die Diagonalisierung des Dilatationsoperators definiert ist. Dieser Operator ist der Teil der konformen Algebra, der Skalentransformationen erzeugt. In jüngerer Zeit wurde vorgeschlagen, dass verwandte Theorien, die man kollektiv als stark getwistete N=4 SYM bezeichnet, tatsächlich einfacher wären. Wir untersuchen das Spektralproblem dieser Theorien und bestimmen die Eigenwerte des Dilatationsoperators. Dabei ist unsere Analyse auf Einschleifenordnung beschränkt. Wir leiten zunächst den Einschleifendilatationsoperator der stark getwisteten Modelle her. Bemerkenswerterweise ist der Dilatationsoperator nicht diagonalisierbar, da die stark getwisteten Theorien nicht unitär sind. Wir definieren den Begriff des eklektischen Feldinhalts von lokalen zusammengesetzten Operatoren. Eine endliche Potenz des Dilatationsoperators bildet die entsprechenden Operatoren mit eklektischem Feldinhalt auf null ab. Die Herleitung unterschiedlicher Bethe Ansätze wird präsentiert um die Eigenzustände des Dilatationsoperators zu finden. Wir stellen die Lösungen der Bethe Gleichungen vor, wobei wir Sektor für Sektor vorgehen. Wir konstruieren auch einige der auftretenden Jordan Blöcke. Des Weiteren diskutieren wir den Einfluss, den die Jordan Blöcke auf die Zweipunktfunktionen der Theorie haben. In einer nicht unitären Theorie ist die Klassifikation der lokal zusammengesetzten Operatoren in Primäroperatoren und Abkömmlinge nicht vollständig und eine dritte Art Operator, nämlich der logarithmische Operator, tritt auf. Die entsprechenden Zweipunktfunktionen enthalten Logarithmen. / Over the last two decades, N=4 Super Yang-Mills theory (SYM) has established a reputation of being the simplest interacting quantum field theory in four dimensions. In the so-called planar limit, N=4 SYM turned out to be an integrable conformal field theory. Integrability was first found when solving the spectral problem, which is defined as diagonalising the dilatation operator. The latter is the part of the conformal algebra generating scaling transformations. Its eigenvalues are the anomalous dimensions. More recently, it was proposed that a certain non-unitary deformation of N=4 SYM, the so-called strongly-twisted theories, are actually simpler. We investigate the spectral problem of these theories at one-loop order. We derive the one-loop dilatation operator of the strongly-twisted models and express it in terms of the one of the untwisted theory. Notably, since the strongly-twisted theories are non-unitary, the dilatation operator turns out to be non-diagonalisable. We define the notion of eclectic field content of local composite operators. A finite number of applications of the dilatation operator annihilates these local composite operators with eclectic field content. A derivation of several different Bethe ansätze to find eigenstates of the dilatation operator is presented. Furthermore, we also propose a short-cut to derive the Bethe equations from those of the unscaled models. We present solutions to the Bethe equations sector by sector, derive the Jordan blocks of the dilatation operator and show their impact on the two-point correlation functions of the theory. The classification of local composite operators into primaries and descendants is no longer complete in a non-unitary theory and a third type of operator, named a logarithmic operator, appears. The corresponding two-point functions contain logarithms.
|
19 |
Atomic Fock states and quantum computingWan, Shoupu 22 October 2009 (has links)
The potential impact of quantum computing has stimulated a worldwide effort to develop the necessary experimental and theoretical resources. In
the race for the quantum computer, several candidate systems have emerged, but the ultimate system is still unclear. We study theoretically how to realize atomic Fock states both for fermionic and bosonic atoms, mainly in
one-dimensional optical traps. We demonstrate a new approach of quantum
computing based on ultracold fermionic atomic Fock states in optical traps.
With the Pauli exclusion principle, producing fermionic atomic Fock
states in optical traps is straightforward. We find that laser culling of fermionic
atoms in optical traps can produce a scalable number of ultra-high fidelity
qubits. We show how each qubit can be independently prepared, and how
to perform the required entanglement operations and detect the qubit states with spatially resolved, single-atom detection with adiabatic trap-splitting and
fluorescence imaging. On the other hand, bosonic atoms have a strong tendency to stay together. One must rely on strong repulsive interactions to produce bosonic
atomic Fock states. To simulate the physical conditions of producing Fock
states with ultracold bosonic atoms, we study a many-boson system with arbitrary interaction strength using the Bethe ansatz method. This approach
provides a general framework, enabling the study of Fock state production
over a wide range of realistic experimental parameters. / text
|
20 |
Modèles de Hubbard unidimensionels généralisésFomin, V. 20 September 2010 (has links) (PDF)
Cette thèse est consacrée à l'étude du modèle de Hubbard unidimensionnel et à ses généralisa- tions. Le modèle de Hubbard est un modèle fondamental de la physique de la matière condensée, décrivant des électrons en interaction sur un réseau. Il a une très riche structure physique. Malgré la simplicité de sa construction, le modèle a été appliqué dans différents problèmes comme la supra- conductivité à haute température, le magnétisme et la transition métal-isolant. A une dimension, le modèle de Hubbard est un modèle intégrable très étudié qui a servi de 'laboratoire' pour la physique de la matière condensée. Récemment, les systèmes intégrables quantiques d'une facon générale, et le modèle de Hubbard en particulier, sont apparus d'une manière surprenante dans le contexte de la correspondance AdS/CFT. Le point de contact entre ces domaines est les équations de Bethe : celles de nouveaux modèles intégrables et de modèles existants généralisés sont à priori significatifs dans l'application en dualité AdS/CFT. Dans la premiere partie de la thèse, les notions de base sur l'intégrabilité quantique sont présen- tées : formalisme de la matrice R, équation de Yang-Baxter, chaînes de spin intégrables. Dans la deuxième partie, certaines résultats fondamentaux concernant le modèle de Hubbard sont passés en revue : la solution par l'Ansatz de Bethe coordonnée, les solutions réelles des équations de Lieb-Wu etc. De plus, l'application dans la correspondance AdS/CFT est considérée. Cependant, on trouve que certaines modifications du modèle de Hubbard sont nécessaires pour reproduire les résultats de cette correspondance. Cela est une des motivations principales d'étude de modèles de Hubbard généralisés. La quatrième partie est consacrée aux généralisations du modèle de Hubbard, en se con- centrant sur les cas supersymétriques. La chapitre cinq expose les résultats obtenus dans le cadre de cette thèse sur les modèles de Hubbard généralisés, en particulier, l'Ansatz de Bethe coordonnée ainsi que les solutions réelles des équations de Bethe obtenues dans la limite thermodynamique. Les équations de Bethe obtenues sont différentes de celle de Lieb et Wu par des phases dont la manifesta- tion est un signe encourageant pour l'application en AdS/CFT contexte. Les applications possibles, notamment dans le domaine de la physique de la matière condensée, sont également considérées.
|
Page generated in 0.0758 seconds