Spelling suggestions: "subject:"bidirectional DC-DC converter"" "subject:"bidirectional DC-DC konverter""
1 |
EMI Characterization and Improvement of Bi-Directional DC/DC ConvertersQu, Dayu 07 October 1999 (has links)
A worldwide awareness of the environment is accelerating fuel cell vehicle development. With respect to power electronics, special requirement is on the development of high efficiency, high voltage ratio bi-directional DC/DC converter for fuel cell energy system management.
In this paper, two bi-directional DC/DC converters, which are developed for Ford Motor Company’s fuel cell vehicle, are compared from different aspects. Comparison is concentrated on the circuit topology and EMI performance. Emphasis is placed on soft-switch, hard-switch, synchronized rectification, auxiliary start-up winding and their effect on EMI performance in this kind of isolated bi-directional converter.
Comparison includes circuits analysis and test result. The EMI test setup is described. EMI measurements are given and explained. EMI solutions for bi-directional DC/DC converter are discussed. An EMI filter is designed and final test result is given. / Master of Science
|
2 |
Analysis Of A Wave Power System With Passive And Active RectificationWahid, Ferdus January 2020 (has links)
Wave energy converter (WEC) harnesses energy from the ocean to produce electrical power. The electrical power produced by the WEC is fluctuating and is not maximized as well, due to the varying ocean conditions. As a consequence, without any intermediate power conversion stage, the output power from the WEC can not be fed into the grid. To feed WEC output power into the grid, a two-stage power conversion topology is used, where the WEC output power is first converted into DCpower through rectification, and then a DC-AC converter (inverter) is used to supply AC power into the grid. The main motive of this research is to extract maximum electrical power from the WEC by active rectification and smoothing the power fluctuation of the wave energy converter through a hybrid energy storage system consisting of battery and flywheel. This research also illustrates active and reactive power injection to the grid according to load demand through a voltage source inverter.
|
3 |
Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric VehiclesMoshirvaziri, Mazhar 22 November 2012 (has links)
This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated half-bridge converter is developed for the LEV based HESS applications. A 2 kW, 100 V interleaved two-phase converter prototype was implemented. The peak efficiency of 97.5% and a minimum efficiency of 88% over the full load range are achieved.
Furthermore, a power-mix optimizer utilizing the real-time Global Positioning System (GPS) data for the EV based HESS is proposed. For a specific design, it is shown that at the cost of less than 1.5% of the overall energy savings, the proposed scheme reduces the peak battery charge and discharge rates by 76% and 47%, respectively. A 30 kW bi-directional dc-dc converter is also designed and implemented for future deployment of the designed HESS into a prototype EV, known as A2B.
|
4 |
Ultracapacitor/Battery Hybrid Energy Storage Systems for Electric VehiclesMoshirvaziri, Mazhar 22 November 2012 (has links)
This thesis deals with the design of Hybrid Energy Storage System (HESS) for Light Electric Vehicles (LEV) and EVs. More specifically, a tri-mode high-efficiency non-isolated half-bridge converter is developed for the LEV based HESS applications. A 2 kW, 100 V interleaved two-phase converter prototype was implemented. The peak efficiency of 97.5% and a minimum efficiency of 88% over the full load range are achieved.
Furthermore, a power-mix optimizer utilizing the real-time Global Positioning System (GPS) data for the EV based HESS is proposed. For a specific design, it is shown that at the cost of less than 1.5% of the overall energy savings, the proposed scheme reduces the peak battery charge and discharge rates by 76% and 47%, respectively. A 30 kW bi-directional dc-dc converter is also designed and implemented for future deployment of the designed HESS into a prototype EV, known as A2B.
|
Page generated in 0.0836 seconds