Spelling suggestions: "subject:"biaix política"" "subject:"aix política""
1 |
Detecting Deception, Partisan, and Social BiasesSánchez Junquera, Juan Javier 06 September 2022 (has links)
Tesis por compendio / [ES] En la actualidad, el mundo político tiene tanto o más impacto en la sociedad que ésta en el mundo político. Los líderes o representantes de partidos políticos hacen uso de su poder en los medios de comunicación, para modificar posiciones ideológicas y llegar al pueblo con el objetivo de ganar popularidad en las elecciones gubernamentales.A través de un lenguaje engañoso, los textos políticos pueden contener sesgos partidistas y sociales que minan la percepción de la realidad. Como resultado, los seguidores de una ideología, o miembros de una categoría social, se sienten amenazados por otros grupos sociales o ideológicos, o los perciben como competencia, derivándose así una polarización política con agresiones físicas y verbales.
La comunidad científica del Procesamiento del Lenguaje Natural (NLP, según sus siglas en inglés) contribuye cada día a detectar discursos de odio, insultos, mensajes ofensivos, e información falsa entre otras tareas computacionales que colindan con ciencias sociales. Sin embargo, para abordar tales tareas, es necesario hacer frente a diversos problemas entre los que se encuentran la dificultad de tener textos etiquetados, las limitaciones de no trabajar con un equipo interdisciplinario, y los desafíos que entraña la necesidad de soluciones interpretables por el ser humano.
Esta tesis se enfoca en la detección de sesgos partidistas y sesgos sociales, tomando como casos de estudio el hiperpartidismo y los estereotipos sobre inmigrantes. Para ello, se propone un modelo basado en una técnica de enmascaramiento de textos capaz de detectar lenguaje engañoso incluso en temas controversiales, siendo capaz de capturar patrones del contenido y el estilo de escritura. Además, abordamos el problema usando modelos basados en BERT, conocidos por su efectividad al capturar patrones sintácticos y semánticos sobre las mismas representaciones de textos. Ambos enfoques, la técnica de enmascaramiento y los modelos basados en BERT, se comparan en términos de desempeño y explicabilidad en la detección de hiperpartidismo en noticias políticas y estereotipos sobre inmigrantes. Para la identificación de estos últimos, se propone una nueva taxonomía con fundamentos teóricos en sicología social, y con la que se etiquetan textos extraídos de intervenciones partidistas llevadas a cabo en el Parlamento español. Los resultados muestran que los enfoques propuestos contribuyen al estudio del hiperpartidismo, así como a identif i car cuándo los ciudadanos y políticos enmarcan a los inmigrantes en una imagen de víctima, recurso económico, o amenaza. Finalmente, en esta investigación interdisciplinaria se demuestra que los estereotipos sobre inmigrantes son usados como estrategia retórica en contextos políticos. / [CA] Avui, el món polític té tant o més impacte en la societat que la societat en el món polític. Els líders polítics, o representants dels partits polítics, fan servir el seu poder als mitjans de comunicació per modif i car posicions ideològiques i arribar al poble per tal de guanyar popularitat a les eleccions governamentals. Mitjançant un llenguatge enganyós, els textos polítics poden contenir biaixos partidistes i socials que soscaven la percepció de la realitat. Com a resultat, augmenta la polarització política nociva perquè els seguidors d'una ideologia, o els membres d'una categoria social, veuen els altres grups com una amenaça o competència, que acaba en agressions verbals i físiques amb resultats desafortunats.
La comunitat de Processament del llenguatge natural (PNL) té cada dia noves aportacions amb enfocaments que ajuden a detectar discursos d'odi, insults, missatges ofensius i informació falsa, entre altres tasques computacionals relacionades amb les ciències socials. No obstant això, molts obstacles impedeixen eradicar aquests problemes, com ara la dif i cultat de tenir textos anotats, les limitacions dels enfocaments no interdisciplinaris i el repte afegit per la necessitat de solucions interpretables.
Aquesta tesi se centra en la detecció de biaixos partidistes i socials, prenent com a cas pràctic l'hiperpartidisme i els estereotips sobre els immigrants.
Proposem un model basat en una tècnica d'emmascarament que permet detectar llenguatge enganyós en temes polèmics i no polèmics, capturant pa-trons relacionats amb l'estil i el contingut. A més, abordem el problema avaluant models basats en BERT, coneguts per ser efectius per capturar patrons semàntics i sintàctics en la mateixa representació. Comparem aquests dos enfocaments (la tècnica d'emmascarament i els models basats en BERT) en termes de rendiment i les seves solucions explicables en la detecció de l'hiperpartidisme en les notícies polítiques i els estereotips d'immigrants.
Per tal d'identificar els estereotips dels immigrants, proposem una nova tax-onomia recolzada per la teoria de la psicologia social i anotem un conjunt de dades de les intervencions partidistes al Parlament espanyol. Els resultats mostren que els nostres models poden ajudar a estudiar l'hiperpartidisme i identif i car diferents marcs en què els ciutadans i els polítics perceben els immigrants com a víctimes, recursos econòmics o amenaces. Finalment, aquesta investigació interdisciplinària demostra que els estereotips dels immigrants s'utilitzen com a estratègia retòrica en contextos polítics. / [EN] Today, the political world has as much or more impact on society than society has on the political world. Political leaders, or representatives of political parties, use their power in the media to modify ideological positions and reach the people in order to gain popularity in government elections.
Through deceptive language, political texts may contain partisan and social biases that undermine the perception of reality. As a result, harmful political polarization increases because the followers of an ideology, or members of a social category, see other groups as a threat or competition, ending in verbal and physical aggression with unfortunate outcomes.
The Natural Language Processing (NLP) community has new contri-butions every day with approaches that help detect hate speech, insults, of f ensive messages, and false information, among other computational tasks related to social sciences. However, many obstacles prevent eradicating these problems, such as the dif f i culty of having annotated texts, the limitations of non-interdisciplinary approaches, and the challenge added by the necessity of interpretable solutions.
This thesis focuses on the detection of partisan and social biases, tak-ing hyperpartisanship and stereotypes about immigrants as case studies. We propose a model based on a masking technique that can detect deceptive language in controversial and non-controversial topics, capturing patterns related to style and content. Moreover, we address the problem by evalu-ating BERT-based models, known to be ef f ective at capturing semantic and syntactic patterns in the same representation. We compare these two approaches (the masking technique and the BERT-based models) in terms of their performance and the explainability of their decisions in the detection of hyperpartisanship in political news and immigrant stereotypes. In order to identify immigrant stereotypes, we propose a new taxonomy supported by social psychology theory and annotate a dataset from partisan interventions in the Spanish parliament. Results show that our models can help study hyperpartisanship and identify dif f erent frames in which citizens and politicians perceive immigrants as victims, economic resources, or threat. Finally, this interdisciplinary research proves that immigrant stereotypes are used as a rhetorical strategy in political contexts. / This PhD thesis was funded by the MISMIS-FAKEnHATE research project
(PGC2018-096212-B-C31) of the Spanish Ministry of Science and Innovation. / Sánchez Junquera, JJ. (2022). Detecting Deception, Partisan, and Social Biases [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185784 / Compendio
|
Page generated in 0.0586 seconds