• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A mathematical study on coupled multiple timescale systems, synchronization of populations of endocrine neurons / Etude mathématique de systèmes multi-échelles en temps couplés, synchronisation de populations de neurones endocrines

Köksal Ersöz, Elif 13 December 2016 (has links)
Dans cette thèse, nous étudions les propriétés de synchronisation d'oscillateurs lents-rapides inspirés de la neuroendocrinologie et des neurosciences, en se concentrant sur les effets des phénomènes de type canard et bifurcations dynamiques sur le comportement collectif.Nous partons d'un système de dimension 4 qui représente les caractéristiques dynamiques qualitatives et quantitatives du profil de sécrétion de la neurohormone GnRH (gonadotropin releasing hormone) au cours d'un cycle ovarien. Ce modèle est constitué de deux oscillateurs de FitzHugh-Nagumo avec pour chacun des échelles de temps différentes. Le couplage unidirectionnel de l'oscillateur lent (représentant l'activité moyenne d'une population de neurones régulateurs) vers l'oscillateur rapide (représentant l'activité moyenne d'une population de neurones sécréteurs) donne une structure à trois échelles de temps. Le comportement de l'oscillateur rapide est caractérisé par une alternance entre un régime de type cycle de relaxation et un régime de quasi-stationnaire qui induit des transitions de type canard dans le modèle ; ces transitions ont un fort impact sur le modèle de sécrétion du système de dimension 4. Nous proposons un premier pas supplémentaire dans la modélisation multi-échelles (en espace) du système GnRH, c'est-à-dire que nous étendons le système original à 6 dimensions en considérant deux sous-populations distinctes de neurones sécréteurs recevant le même signal des neurones de régulation. Cette étape nous permet de enrichir les motifs possibles de sécrétion de GnRH tout en gardant un cadre dynamique compact et en préservant la séquence des événements neuro-sécréteurs capturés par le modèle de dimension 4, à la fois qualitativement et quantitativement.Une première analyse du modèle GnRH étendu à 6 dimensions est présentée dans le Chapitre 2, où nous montrons à l'aide d'un système minimal de dimension 5 l'existence de trajectoires de type canard dans des systèmes lents-rapides couplés présentant des points pseudo-stationnaires. Le couplage provoque la séparation des trajectoires correspondant à chaque sécréteur qui se retrouvent de chaque côté du canard maximal (associé soit à un point pseudo-stationnaire de type noeud soit à un pseudo-col). Nous explorons les rapports entre les canards en présence et le couplage, ainsi que leur impact sur les motifs de sécrétion collective du modèle de dimension 6. Nous identifions deux sources différentes de (dé)synchronisation due aux canards dans les événements sécrétoires, qui dépendent du type de point pseudo-stationnaire sous-jacent.Dans le Chapitre 3, nous proposons une modélisation possible des comportements complexes de sécrétion de GnRH qui ne sont pas capturés par le modèle de dimension 4, à savoir, une décharge avec 2 ``bosses'' et une désynchronisation partielle avant la décharge, en utilisant le modèle de dimension 6 précédemment construit. Pour obtenir une décharge avec deux bosses, il est essentiel d'utiliser des fonctions de couplage asymétriques dépendant du régulateur ainsi que d'introduire de l'hétérogénéité dans les sous-populations de sécréteurs. Pendant le régime pulsatile, il apparaît que le signal régulateur varie lentement et, ce faisant, provoque une bifurcation dynamique qui est responsable de la perte de synchronie dans le cas de sécréteurs non identiques et asymétriquement couplés. Nous introduisons des outils analytiques et numériques pour façonner et quantifier ces caractéristiques supplémentaires et les intégrer dans le profil complet de sécrétion. / This dissertation investigates synchronization properties of slow-fast oscillators inspired from neuroendocrinology and neuronal dynamics, focusing on the effects of canard phenomena and dynamic bifurcations on the collective behavior. We start from a 4-dimensional system which accounts for the qualitative and quantitative dynamical features of the secretion pattern of the neurohormone GnRH (gonadotropin releasing hormone) along a whole ovarian cycle. This model involves 2 FitzHugh-Nagumo oscillators with different timescales. Unidirectional coupling from the slow oscillator (representing the mean-field activity of a population of regulating neurons) to the fast oscillator (representing the mean-field activity of a population of the secreting neurons) gives a three timescale structure. The behavior of the fast oscillator is characterized by an alternation between a relaxation cycle and a quasi-stationary state which introduces canard-mediated transitions in the model; these transitions have a strong impact on the secretion pattern of the 4-dimensional system. We make a first step forward in multiscale modeling (in space) of the GnRH system, namely, we extend the original system to 6 dimensions by considering two distinct subpopulations of secreting neurons receiving the same signal from the regulating neurons. This step allows us to enrich further the GnRH secretion pattern while keeping a compact dynamic framework and preserving the sequence of neurosecretory events captured by the 4-dimensional model, both qualitatively and quantitatively. An initial analysis of the extended 6-dimensional GnRH model is presented in Chapter 2, where we prove using a 5D minimal model the existence of canard trajectories in coupled systems with folded singularities. Coupling causes separation of trajectories corresponding to each secretor by driving them to different sides of the maximal canard (associated with either a folded-node or a folded-saddle singularity). We explore the impact of the relationship between canard structures and coupling on the collective secretion pattern of the 6-dimensional model. We identify two different sources of canard-mediated (de)synchronization in the secretory events, which depend on the type of underlying folded singularity. In Chapter 3, we attempt to model complex behaviors of the GnRH secretion not captured by the 4-dimensional model, namely, a surge with 2 bumps and partial desynchronization before the surge, by using the 6-dimensional model previously constructed. Regulatory-dependent asymmetric coupling functions and heterogeneity in the secretor subpopulations are essential for obtaining such a 2-bump surge. During the pulsatile regime, we find that the slowly varying regulatory signal causes a dynamic bifurcation, which is responsible for loss of synchrony in asymmetrically coupled nonidentical secretors. We introduce analytic and numerical tools to shape and quantify the additional features embedded within the whole secretion pattern.
2

Equations différentielles stochastiques singulièrement perturbées

Berglund, Nils 22 January 2004 (has links) (PDF)
Nous considérons des systèmes d'équations différentielles stochastiques faisant intervenir deux échelles de temps bien distinctes. Nous commençons par établir, dans un cadre général, des propriétés de concentration des trajectoires au voisinage des variétés lentes du système déterministe correspondant. Nous étudions ensuite la dynamique au voisinage de points de bifurcation de la variété lente, en particulier dans le cas d'une bifurcation noeud-col et d'une bifurcation fourche. Les phénomènes apparentées de la résonance stochastique et de l'hystérésis dynamique sont également étudiés en détail. Finalement, nous dérivons la loi des temps de passage à travers une orbite périodique instable, pour une famille d'équations qui ne sont pas limitées au cas d'échelles de temps distinctes.

Page generated in 0.1109 seconds