Spelling suggestions: "subject:"equations différentielle stochastique"" "subject:"aquations différentielle stochastique""
1 |
Discrétisation de processus stochastiques, estimées de densités et applicationsMenozzi, Stephane 10 November 2010 (has links) (PDF)
Nous présentons dans ce mémoire un résumé des travaux concernant tout d'abord les discrétisations de processus stochastiques: processus de diffusion stoppés, équation différentielles stochastiques rétrogrades, développement d'erreur pour les densités d'EDS dirigées par des processus stables symétriques approchées par leur schéma d'Euler. Nous abordons ensuite les estimées de densité pour une certaine classe de processus dégénérés (processus de Langevin et théorème limite local associé, chaine d'oscillateurs bruités) ainsi que quelques applications (bornes de Monte Carlo non asymptotiques).
|
2 |
Modélisation et méthodes d'évaluation de contrats gaziers: Approches par contrôle stochastiqueBernhart, Marie 11 March 2011 (has links) (PDF)
Le travail présenté dans cette thèse a été motivé par des problématiques posées par l'évaluation de contrats échangés sur le marché du gaz: les contrats de stockage et d'approvisionnement en gaz. Ceux-ci incorporent de l'optionalité et des contraintes, ce qui rend leur évaluation difficile dans un contexte de prix de matières premières aléatoires. L'évaluation de ces contrats mène à des problèmes de contrôle stochastique complexes: switching optimal ou contrôle impulsionnel et contrôle stochastique en grande dimension. La première partie de cette thèse est une revue relativement exhaustive de la littérature, mettant en perspective les différentes approches d'évaluation existantes. Dans une deuxième partie, nous considérons une méthode numérique de résolution de problèmes de contrôle impulsionnel basée sur leur représentation comme solution d'EDSRs à sauts contraints. Nous proposons une approximation à temps discret utilisant une pénalisation pour traiter la contrainte et donnons un taux de convergence de l'erreur introduite. Combinée avec des techniques Monte Carlo, cette méthode a été testée numériquement sur trois problèmes: gestion optimale de biomasse, évaluation d'options Swing et de contrats de stockage gaz. Dans une troisième partie, nous proposons une méthode pour l'évaluation d'options dont le payoff dépend de moyennes mobiles de prix sous-jacents. Elle utilise sur une approximation à dimension finie de la dynamique des processus de moyenne mobile, basée sur un développement en série de Laguerre tronquée. Les résultats numériques fournis incluent des exemples de contrats Swing gaziers à prix d'exercice indexés sur moyennes mobiles de prix pétroliers.
|
3 |
Existence, unicité et approximation des équations de Schrödinger stochastiques.Pellegrini, Clément 23 June 2008 (has links) (PDF)
Les "équations de Schrödinger stochastiques" sont des équations différentielles stochastiques de type non classique qui apparaissent dans le domaine de la mesure en mécanique quantique. Leurs solutions sont appelées "trajectoires quantiques" et décrivent l'évolution de petits systèmes quantiques ouverts soumis à une mesure continue de type indirecte (on mesure l'environnement qui interagit avec le petit système).<br /><br />Habituellement, les justifications mathématiques et physiques de ces modèles sont loin d'être intuitives et évidentes. Soit elles manquent de rigueur car basées sur des arguments heuristiques, soit elles uilisent des outils mathématiques lourds et très abstraits (Filtrage quantique, espérance conditionnelle dans les algèbres de Von Neumann...).<br /><br />Dans cette thèse, on met en place un modèle discret de mesure en mécanique quantique. Ce modèle est basé sur celui des "interactions quantiques répétées" développé par Stéphane ATTAL et Yan PAUTRAT. Le cadre est le suivant. On considère un petit système en contact avec une chaine infinie de petits systèmes (tous notés H) identiques et indépedants entre eux. Chaque copie H interagit avec le petit système pendant un temps h. Après chaque interaction, on effectue une mesure sur H. Cette série de mesures entraine une série de modifications aléatoires de l'état du petit système. Cette série de modifications est alors décrite à l'aide d'une chaine de Markov dépendante du paramètre h. On montre alors que l'on peut obtenir les trajectoires quantiques, solutions des équations de Schrödinger stochastiques, comme limite continue (h tend vers 0) à partir de ces chaines de Markov. Ce résultat de convergence nécessite, au préalable, une étude complète des problèmes d'existence et d'uncité des solutions.<br /><br />Grâce à ce résultat de convergence, à partir d'un modèle physique discret, on justifie de façon rigoureuse et intuive l'utilisation des équations de Schrödinger stochastiques. On étend ensuite ces résultats dans le cas de modèles en dimension finie quelconque et on introduit la notion de controle.
|
4 |
Etude théorique et numérique de quelques modèles stochastiques en physique statistique / Theoretical and numerical study of a few stochastic models of statistical physicsFathi, Max 03 December 2014 (has links)
Dans cette thèse, nous nous intéressons essentiellement à trois sujets : les inégalités fonctionnelles à contenu probabiliste, les limites hydrodynamiques pour les systèmes de spins continus en interaction et la discrétisation des équations différentielles stochastiques. Ce document, outre l'introduction, comporte trois parties. La première s'intéresse aux inégalités fonctionnelles, et notamment aux inégalités de Sobolev logarithmiques, pour les mesures canoniques, ainsi qu'aux limites hydrodynamiques pour les systèmes des spins continus. La convergence vers la limite hydrodynamique pour plusieurs variantes du modèle de Ginzburg--Landau équipé de la dynamique de Kawasaki y est obtenue, avec notamment des bornes quantitatives en le nombre de spins. On y étudie également la convergence de l'entropie microscopique vers l'entropie hydrodynamique. La deuxième partie étudie les liens entre flots gradients dans les espaces de mesures de probabilités et grandes déviations pour les suites de lois de solutions d'équations différentielles stochastiques. On y obtient l'équivalence entre le principe de grandes déviations et la Gamma-Convergence d'une suite de fonctionnelles apparaissant dans la formulation en flots gradients du flot de marginales des lois des solutions des équations différentielles stochastiques. Comme application de ce principe, on obtient les grandes déviations par rapport à la limite hydrodynamique pour deux variantes du modèle de Ginzburg--Landau. La troisième partie concerne la discrétisation des équations différentielles stochastiques. On y prouve une inégalité transport-Entropie pour la loi du schéma d'Euler explicite. Cette inégalité implique des bornes sur les intervalles de confiance pour l'estimation de quantités de la forme $\mathbb{E}[f(X_T)]$. On y étudie également l'erreur de discrétisation pour l'évaluation des coefficients de transport avec l'algorithme MALA (qui est une combinaison du schéma d'Euler explicite et de l'algorithme de Metropolis--Hastings). / In this thesis, we are mainly interested in three topics : functional inequalities and their probabilistic aspects, hydrodynamic limits for interacting continuous spin systems and discretizations of stochastic differential equations. This document, in addition to a general introduction (written in French), contains three parts. The first part deals with functional inequalities, especially logarithmic Sobolev inequalities, for canonical ensembles, and with hydrodynamic limits for continuous spin systems. We prove convergence to the hydrodynamic limit for several variants of the Ginzburg--Landau model endowed with Kawasaki dynamics, with quantitative bounds in the number of spins. We also study convergence of the microscopic entropy to its hydrodynamic counterpart. In the second part, we study links between gradient flows in spaces of probability measures and large deviations for sequences of laws of solutions to stochastic differential equations. We show that the large deviations principle is equivalent to the Gamma--Convergence of a sequence of functionals that appear in the gradient flow formulation of the flow of marginals of the laws of the diffusion processes. As an application of this principle, we obtain large deviations from the hydrodynamic limit for two variants of the Ginzburg-Landau model. The third part deals with the discretization of stochastic differential equations. We prove a transport-Entropy inequality for the law of the explicit Euler scheme. This inequality implies bounds on the confidence intervals for quantities of the form $\mathbb{E}[f(X_T)]$. We also study the discretization error for the evaluation of transport coefficients with the Metropolis-Adjusted Langevin algorithm (which is a combination of the explicit Euler scheme and the Metropolis algorithm).
|
5 |
Problèmes de contrôle stochastiques : contrôle sous contrainte, contrôlabilité et application à la réassuranceGoreac, Dan 17 December 2007 (has links) (PDF)
Le but de cette thèse est de présenter quelques contributions dans le cadre du contrôle des équations différentielles stochastiques en dimension finie où infinie :<br />(1) Contrôle stochastique non borné sous contraintes d'état.<br />Nous étudions une condition nécessaire sous laquelle les solutions d'une EDS régie par un processus de contrôle non-borné restent dans un voisinage arbitrairement petit d'un ensemble donné de contraintes.<br />(2) Contrôlabilité approchée pour des équations différentielles linéaires avec bruit contrôlé.<br />Dans cette deuxième partie, on s'intéresse à la propriété de contrôlabilité approchée pour une EDS linéaire. Nous proposons une généralisation de la condition de Kalman pour le cas général où le contrôle agit sur le bruit.<br />(3) Contrôlabilité approchée pour des équations différentielles linéaires en dimension infinie.<br />La troisième partie est dédiée à l'étude de la propriété de contrôlabilité approchée pour un système stochastique linéaire dans un espace de Hilbert réel et séparable. En particulier, nous montrons l'existence et unicité pour la solution de l'EDSR duale lorsque les opérateurs qui agissent sur Y et Z sont non-bornés. Dans le cas d'un générateur infinitésimal d'un semi-groupe exponentiellement stable, nous montrons que le test généralisé de Hautus donne une condition nécessaire pour la contrôlabilité approchée.<br />(4) Assurance, réassurance et paiement de dividendes.<br />Nous introduisons un modèle d'assurance qui permet la réassurance et le paiement des dividendes. Notre modèle prend en compte plusieurs contrats homogènes ainsi que la législation européenne en vigueur concernant les provisions des sociétés d'assurance.
|
6 |
On probability distributions of diffusions and financial models with non-globally smooth coefficients / Sur les lois de diffusions et de modèles financiers avec coefficients non globalement réguliersDe Marco, Stefano 23 November 2010 (has links)
Des travaux récents dans le domaine des mathématiques financières ont fait émerger l'importance de l'étude de la régularité et du comportement fin des queues de distribution pour certaines classes de diffusions à coefficients non globalement réguliers. Dans cette thèse, nous traitons des problèmes issus de ce contexte. Nous étudions d'abord l'existence, la régularité et l'asymptotique en espace de densités pour les solutions d'équations différentielles stochastiques en n'imposant que des conditions locales sur les coefficients de l'équation. Notre analyse se base sur les outils du calcul de Malliavin et sur des estimations pour les processus d'Ito confinés dans un tube autour d'une courbe déterministe. Nous obtenons des estimations significatives de la fonction de répartition et de la densité dans des classes de modèles comprenant des généralisations du CIR et du CEV et des modèles à volatilité locale-stochastique : dans ce deuxième cas, les estimations entraînent l'explosion des moments du sous-jacent et ont ainsi un impact sur le comportement asymptotique en strike de la volatilité implicite. La modélisation paramétrique de la surface de volatilité, à son tour, fait l'objet de la deuxième partie. Nous considérons le modèle SVI de J. Gatheral, en proposant une nouvelle stratégie de calibration quasi-explicite, dont nous illustrons les performances sur des données de marché. Ensuite, nous analysons la capacité du SVI à générer des approximations pour les smiles symétriques, en le généralisant à un modèle dépendant du temps. Nous en testons l'application à un modèle de Heston (sans et avec déplacement), en générant des approximations semi-fermées pour le smile de volatilité / Some recent works in the field of mathematical finance have brought new light on the importance of studying the regularity and the tail asymptotics of distributions for certain classes of diffusions with non-globally smooth coefficients. In this Ph.D. dissertation we deal with some issues in this framework. In a first part, we study the existence, smoothness and space asymptotics of densities for the solutions of stochastic differential equations assuming only local conditions on the coefficients of the equation. Our analysis is based on Malliavin calculus tools and on « tube estimates » for Ito processes, namely estimates for the probability that the trajectory of an Ito process remains close to a deterministic curve. We obtain significant estimates of densities and distribution functions in general classes of option pricing models, including generalisations of CIR and CEV processes and Local-Stochastic Volatility models. In the latter case, the estimates we derive have an impact on the moment explosion of the underlying price and, consequently, on the large-strike behaviour of the implied volatility. Parametric implied volatility modeling, in its turn, makes the object of the second part. In particular, we focus on J. Gatheral's SVI model, first proposing an effective quasi-explicit calibration procedure and displaying its performances on market data. Then, we analyse the capability of SVI to generate efficient approximations of symmetric smiles, building an explicit time-dependent parameterization. We provide and test the numerical application to the Heston model (without and with displacement), for which we generate semi-closed expressions of the smile
|
7 |
Marches quantiques ouvertes / Open quantum walksBringuier, Hugo 13 June 2018 (has links)
Cette thèse est consacrée à l'étude de modèles stochastiques associés aux systèmes quantiques ouverts. Plus particulièrement, nous étudions les marches quantiques ouvertes qui sont les analogues quantiques des marches aléatoires classiques. La première partie consiste en une présentation générale des marches quantiques ouvertes. Nous présentons les outils mathématiques nécessaires afin d'étudier les systèmes quantiques ouverts, puis nous exposons les modèles discrets et continus des marches quantiques ouvertes. Ces marches sont respectivement régies par des canaux quantiques et des opérateurs de Lindblad. Les trajectoires quantiques associées sont quant à elles données par des chaînes de Markov et des équations différentielles stochastiques avec sauts. La première partie s'achève avec la présentation de quelques pistes de recherche qui sont le problème de Dirichlet pour les marches quantiques ouvertes et les théorèmes asymptotiques pour les mesures quantiques non destructives. La seconde partie rassemble les articles rédigés durant cette thèse. Ces articles traîtent les sujets associés à l'irréductibilité, à la dualité récurrence-transience, au théorème central limite et au principe de grandes déviations pour les marches quantiques ouvertes à temps continu. / This thesis is devoted to the study of stochastic models derived from open quantum systems. In particular, this work deals with open quantum walks that are the quantum analogues of classical random walks. The first part consists in giving a general presentation of open quantum walks. The mathematical tools necessary to study open quan- tum systems are presented, then the discrete and continuous time models of open quantum walks are exposed. These walks are respectively governed by quantum channels and Lindblad operators. The associated quantum trajectories are given by Markov chains and stochastic differential equations with jumps. The first part concludes with discussions over some of the research topics such as the Dirichlet problem for open quantum walks and the asymptotic theorems for quantum non demolition measurements. The second part collects the articles written within the framework of this thesis. These papers deal with the topics associated to the irreducibility, the recurrence-transience duality, the central limit theorem and the large deviations principle for continuous time open quantum walks.
|
8 |
Trajectoires rugueuses, processus gaussiens et applicationsMarie, Nicolas 10 December 2012 (has links) (PDF)
Les principaux thèmes de cette thèse sont la théorie des trajectoires rugueuses développée par T. Lyons (1998) et ses applications, notamment à l'étude des équations différentielles stochastiques (EDS) et au calcul de sensibilités. Des applications potentielles des résultats théoriques en science du vivant et en finance y sont également développés. En premier lieu, sont étendues l'existence et l'expression des grecques Delta et Véga, sensibilités bien connues en finance, pour des EDS à coefficients bornés et dirigées par un processus gaussien multidimensionnel centré, à trajectoires continues, au-dessus duquel il existe une trajectoire géométrique naturelle. Le cas du mouvement brownien fractionnaire a particulièrement été développé afin de proposer d'une part, une application du calcul de Véga dans un modèle de marché financier à volatilité stochastique fractionnaire et d'autre part, d'effectuer des simulations. En second lieu, est étudiée une généralisation d'équation mean-reverting au cas d'un signal gaussien unidimensionnel, centré et à trajectoires continues : existence globale et unicité de la solution, intégrabilité, continuité et différentiabilité de l'application d'Itô, existence d'un schéma d'approximation convergeant dans tous les Lp avec une vitesse de convergence presque-sure, un principe de grandes déviations et, l'existence d'une densité par rapport à la mesure de Lebesgue. L'étude de cette famille d'EDS a débouché sur une application en pharmacocinétique.
|
9 |
Convergence de filtrations ; application à la discrétisation de processus et à la stabilité de temps d'arrêt.Toldo, Sandrine 25 November 2005 (has links) (PDF)
Cette thèse porte sur des propriétés de stabilité de problèmes d'arrêt dans le cas où l'on dispose d'une information approximative sur le modèle. La filtration engendrée par un processus représente l'information véhiculée par ce processus au cours du temps. Aussi, les propriétés des suites de filtrations associées à des suites de processus jouent un grand rôle dans ce travail. Un premier axe d'étude concerne la stabilité des notions de réduites et de temps d'arrêt optimaux. Une réduite est la valeur maximale de l'espérance d'une fonction dépendant d'un processus et d'un temps d'arrêt, maximum pris sur l'ensemble des temps d'arrêt pour la filtration engendrée par le processus. Un temps d'arrêt optimal est un temps d'arrêt réalisant le maximum. Le second axe concerne la stabilité de solutions d'équations différentielles stochastiques rétrogrades à horizon aléatoire fini presque sûrement quand le mouvement brownien dirigeant l'équation est approché soit par une suite de marches aléatoires, soit par une suite de martingales.
|
10 |
Contributions to second order reflected backward stochastic differentials equations / Contribution aux équations différentielles stochastiques rétrogrades réfléchies du second ordreNoubiagain Chomchie, Fanny Larissa 20 September 2017 (has links)
Cette thèse traite des équations différentielles stochastiques rétrogrades réfléchies du second ordre dans une filtration générale . Nous avons traité tout d'abord la réflexion à une barrière inférieure puis nous avons étendu le résultat dans le cas d'une barrière supérieure. Notre contribution consiste à démontrer l'existence et l'unicité de la solution de ces équations dans le cadre d'une filtration générale sous des hypothèses faibles. Nous remplaçons la régularité uniforme par la régularité de type Borel. Le principe de programmation dynamique pour le problème de contrôle stochastique robuste est donc démontré sous les hypothèses faibles c'est à dire sans régularité sur le générateur, la condition terminal et la barrière. Dans le cadre des Équations Différentielles Stochastiques Rétrogrades (EDSRs ) standard, les problèmes de réflexions à barrières inférieures et supérieures sont symétriques. Par contre dans le cadre des EDSRs de second ordre, cette symétrie n'est plus valable à cause des la non linéarité de l'espérance sous laquelle est définie notre problème de contrôle stochastique robuste non dominé. Ensuite nous un schéma d'approximation numérique d'une classe d'EDSR de second ordre réfléchies. En particulier nous montrons la convergence de schéma et nous testons numériquement les résultats obtenus. / This thesis deals with the second-order reflected backward stochastic differential equations (2RBSDEs) in general filtration. In the first part , we consider the reflection with a lower obstacle and then extended the result in the case of an upper obstacle . Our main contribution consists in demonstrating the existence and the uniqueness of the solution of these equations defined in the general filtration under weak assumptions. We replace the uniform regularity by the Borel regularity(through analytic measurability). The dynamic programming principle for the robust stochastic control problem is thus demonstrated under weak assumptions, that is to say without regularity on the generator, the terminal condition and the obstacle. In the standard Backward Stochastic Differential Equations (BSDEs) framework, there is a symmetry between lower and upper obstacles reflection problem. On the contrary, in the context of second order BSDEs, this symmetry is no longer satisfy because of the nonlinearity of the expectation under which our robust stochastic non-dominated stochastic control problem is defined. In the second part , we get a numerical approximation scheme of a class of second-order reflected BSDEs. In particular we show the convergence of our scheme and we test numerically the results.
|
Page generated in 0.1252 seconds