• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bimetallic tris-oxalate magnets : synthesis structure and properties

Nuttall, Christopher John January 1998 (has links)
No description available.
2

Ion beam processing of surfaces and interfaces – Modeling and atomistic simulations

Liedke, B. 14 March 2012 (has links) (PDF)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund’s sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called trider (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as ’cleanest’ possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect ‘sputtering’. However, taking into account the new mechanisms, a ‘Bradley-Harper equation’ with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at θ ≥ 40°. The evolution of bimetallic interfaces under ion irradiation is another application of trider described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He+ ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The trider program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
3

Nanostructured Assemblies Based On Metal Colloids And Monolayers: Preparation, Characterisation And Studies Towards Novel Applications

Devarajan, Supriya 07 1900 (has links)
Nanoscience dominates virtually every field of science and technology in the 21st century. Nanoparticles are of fundamental interest since they possess unique size- dependent properties (optical, electrical, mechanical, chemical, magnetic etc.), which are quite different from the bulk and the atomic state. Bimetallic nanoparticles are of particular interest since they combine the advantages of the individual monometallic counterparts. The present study focuses on bimetallic nanoparticles containing gold as one of the constituents. Au-Pd, Au-Pt and Au-Ag bimetallic/alloy nanoparticles have been prepared by four different synthetic methods, and characterised by a variety of techniques, with an emphasis on Au-Ag alloy systems in the solution phase as well as in the form of nanostructured films on solid substrates. Au- Ag alloy nanoparticles have been used to demonstrate two different applications. The first is the use of Au-Ag monolayer protected alloy clusters in demonstrating single electron charging events in the solution phase as well as in the dry state. Single electron transfer events involving nanosized particles are being probed extensively due to their potential applications in the field of electronics. The second is an analytical application, involving the use of trisodium citrate capped Au-Ag alloy hydrosols as substrates for surface enhanced Raman and resonance Raman scattering [SE(R)RS] studies. The sols have been used for single molecule detection purposes. Various organic molecules such as quinones, phthalocyanines and methyl violet have been self- assembled in a stepwise manner on the nanoparticulate as well as bulk Au, Ag and Au-Ag surfaces, and characterised extensively by spectroscopic, electrochemical and spectroelectrochemical techniques.
4

Investigação da resistência à corrosão por pites do aço inoxidável duplex tipo 2404 (UNS S82441) submetido à soldagem por atrito com pino não-consumível (FSW) / Investigation of pitting corrosion resistance of duplex stainless steel LDX 2404 (UNS S82441) subjected to Friction Stir Welding (FSW)

LEITE, ANTONIO M. dos S. 17 November 2017 (has links)
Submitted by Pedro Silva Filho (pfsilva@ipen.br) on 2017-11-17T16:32:32Z No. of bitstreams: 0 / Made available in DSpace on 2017-11-17T16:32:32Z (GMT). No. of bitstreams: 0 / Os aços inoxidáveis duplex são largamente utilizados na fabricação de equipamentos para a indústria de óleo e gás, utilizados tanto no ambiente onshore quanto offshore. Sua grande limitação é que, com o aumento de temperatura, ocorre precipitação de fases indesejáveis, que reduzem drasticamente a resistência à corrosão e as propriedades mecânicas desses materiais. Considerando o efeito deletério da soldagem a fusão nos aços inoxidáveis duplex, a soldagem por atrito com pino não-consumível (FSW) é amplamente considerada como alternativa aos processos convencionais. Como no FSW a união dos materiais ocorre no estado sólido, muitos dos problemas de soldabilidade associados às técnicas tradicionais de soldagem por fusão são evitados. Neste trabalho, amostras retiradas da zona misturada (ZM), das zonas afetadas pelo calor (ZTA e ZTMA) e do metal de base (MB) de chapas de aço inoxidável lean duplex LDX 2404&reg (UNS S82441) soldadas por atrito com pino não-consumível foram caracterizadas microestruturalmente e tiveram sua resistência à corrosão avaliada por meio de ensaios eletroquímicos. Os resultados obtidos nos ensaios eletroquímicos indicaram que as zonas afetadas pelo calor e a ZM se mantiveram tão resistentes à corrosão localizada quanto o MB. Permitiram concluir também que a excelente resistência à corrosão da liga está associada ao teor elevado de N. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
5

Estudo da resistência à corrosão das ligas de alumínio 2024-T3 e 7475-T651 soldadas por fricção e mistura (FSW) / Study of the corrosion resistance of aluminium alloys 2024-T3 and 7475-T651 welded by friction stir welding (FSW)

BUGARIN, ALINE de F.S. 21 November 2017 (has links)
Submitted by Pedro Silva Filho (pfsilva@ipen.br) on 2017-11-21T11:56:39Z No. of bitstreams: 0 / Made available in DSpace on 2017-11-21T11:56:39Z (GMT). No. of bitstreams: 0 / O processo de soldagem por fricção e mistura (FSW) tem despertado grande interesse nos últimos anos e tornou-se uma alternativa para unir materiais de baixa soldabilidade, como as ligas de alumínio das séries 2XXX e 7XXX, as quais são empregadas na estrutura das aeronaves, por possuírem elevada relação resistência/peso. O processo FSW, todavia, causa mudanças microestruturais nos materiais soldados, particularmente na zona misturada (ZM) e nas zonas termicamente (ZTA) ou termomecanicamente (ZTMA) afetadas. Estas mudanças geralmente interferem no desempenho frente à corrosão das ligas soldadas. No presente estudo, a resistência à corrosão das ligas de alumínio 2024-T3 e 7475-T761, unidas pelo processo FSW foi investigada em solução 10 mM de NaCl. Ensaios de visualização em gel ágar-ágar e de imersão associados a técnicas microscópicas foram realizados para investigar o efeito do acoplamento galvânico na corrosão das diferentes regiões da junta soldada. Os resultados do ensaio de visualização em gel mostraram que, quando acopladas, a liga 2024 atua como cátodo e a 7475 como ânodo. Os ensaios de imersão revelaram acoplamento galvânico entre as ligas na zona misturada (ZM). A região mais afetada pela corrosão foi a ZTMA da liga 7475, com corrosão intergranular desde as primeiras horas de imersão. A influência do processo de soldagem na resistência à corrosão das duas ligas de alumínio foi investigada por ensaios eletroquímicos. Os ensaios eletroquímicos adotados foram medidas de potencial de circuito aberto (PCA) em função do tempo de exposição ao meio corrosivo, espectroscopia de impedância eletroquímica (EIE) e curvas de polarização potenciodinâmica. Os ensaios de polarização mostraram elevada atividade eletroquímica na zona de mistura indicada pelos altos valores de densidade de corrente em comparação com as demais zonas testadas. Os resultados de EIE globais mostraram que nas primeiras horas de exposição ao eletrólito o processo de corrosão foi predominantemente controlado pela liga 7475; todavia, com o tempo de exposição ao eletrólito, a corrosão passou a ser controlada pela liga 2024. / Dissertação (Mestrado em Tecnologia Nuclear) / IPEN/D / Instituto de Pesquisas Energéticas e Nucleares - IPEN-CNEN/SP
6

Ion beam processing of surfaces and interfaces – Modeling and atomistic simulations

Liedke, B. January 2011 (has links)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund’s sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called trider (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as ’cleanest’ possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect ‘sputtering’. However, taking into account the new mechanisms, a ‘Bradley-Harper equation’ with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at θ ≥ 40°. The evolution of bimetallic interfaces under ion irradiation is another application of trider described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He+ ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The trider program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
7

Ion beam processing of surfaces and interfaces

Liedke, Bartosz 28 December 2011 (has links) (PDF)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°. The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.
8

Ion beam processing of surfaces and interfaces: Modeling and atomistic simulations

Liedke, Bartosz 23 September 2011 (has links)
Self-organization of regular surface pattern under ion beam erosion was described in detail by Navez in 1962. Several years later in 1986 Bradley and Harper (BH) published the first self-consistent theory on this phenomenon based on the competition of surface roughening described by Sigmund's sputter theory and surface smoothing by Mullins-Herring diffusion. Many papers that followed BH theory introduced other processes responsible for the surface patterning e.g. viscous flow, redeposition, phase separation, preferential sputtering, etc. The present understanding is still not sufficient to specify the dominant driving forces responsible for self-organization. 3D atomistic simulations can improve the understanding by reproducing the pattern formation with the detailed microscopic description of the driving forces. 2D simulations published so far can contribute to this understanding only partially. A novel program package for 3D atomistic simulations called TRIDER (TRansport of Ions in matter with DEfect Relaxation), which unifies full collision cascade simulation with atomistic relaxation processes, has been developed. The collision cascades are provided by simulations based on the Binary Collision Approximation, and the relaxation processes are simulated with the 3D lattice kinetic Monte-Carlo method. This allows, without any phenomenological model, a full 3D atomistic description on experimental spatiotemporal scales. Recently discussed new mechanisms of surface patterning like ballistic mass drift or the dependence of the local morphology on sputtering yield are inherently included in our atomistic approach. The atomistic 3D simulations do not depend so much on experimental assumptions like reported 2D simulations or continuum theories. The 3D computer experiments can even be considered as 'cleanest' possible experiments for checking continuum theories. This work aims mainly at the methodology of a novel atomistic approach, showing that: (i) In general, sputtering is not the dominant driving force responsible for the ripple formation. Processes like bulk and surface defect kinetics dominate the surface morphology evolution. Only at grazing incidence the sputtering has been found to be a direct cause of the ripple formation. Bradley and Harper theory fails in explaining the ripple dynamics because it is based on the second-order-effect 'sputtering'. However, taking into account the new mechanisms, a 'Bradley-Harper equation' with redefined parameters can be derived, which describes pattern formation satisfactorily. (ii) Kinetics of (bulk) defects has been revealed as the dominating driving force of pattern formation. Constantly created defects within the collision cascade, are responsible for local surface topography fluctuation and cause surface mass currents. The mass currents smooth the surface at normal and close to normal ion incidence angles, while ripples appear first at incidence angles larger than 40°. The evolution of bimetallic interfaces under ion irradiation is another application of TRIDER described in this thesis. The collisional mixing is in competition with diffusion and phase separation. The irradiation with He ions is studied for two extreme cases of bimetals: (i) Irradiation of interfaces formed by immiscible elements, here Al and Pb. Ballistic interface mixing is accompanied by phase separation. Al and Pb nanoclusters show a self-ordering (banding) parallel to the interface. (ii) Irradiation of interfaces by intermetallics forming species, here Pt and Co. Well-ordered layers of phases of intermetallics appear in the sequence Pt/Pt3Co/PtCo/PtCo3/Co. The TRIDER program package has been proven to be an appropriate technique providing a complete picture of mixing mechanisms.

Page generated in 0.0418 seconds