• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 18
  • 18
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Etude de l'influence de la convection naturelle et forcée sur le processus de la solidification : cas d'un alliage métallique binaire. / Study of the influence of natural and forced convection on the solidification of a binary metal alloy.

Hachani, Lakhdar 08 October 2013 (has links)
Ce travail se situé dans la perspective d'un contrôle de la structure de solidification des alliages métalliques sous l'effet de la convection naturelle et forcée afin d'améliorer à terme la maîtrise des microstructures de solidification grâce à un brassage électromagnétique efficace permettant d'avoir une homogénéisation du bain liquide qui par la suite peut améliorer la microstructure finale de l'alliage. La possibilité retenue dans ce travail est de réaliser ce brassage sans contact avec la solution liquide (alliage sous fusion) et sans pollution par d'autres éléments en utilisant un brassage par la force de Lorentz. L'objet de la thèse comporte une étude théorique à la fois expérimentale basée sur une installation expérimentale particulièrement documentée et instrumentée, développée au laboratoire SIMAP/EPM à Grenoble, nommée AFRODITE. Ce dispositif expérimental permet de fournir des données de quantitatives et qualitatives sur le processus de solidification des alliages métalliques. Ces données sont nécessaires à la contribution aux études menées sur la solidification des alliages métallique et enrichir la base des donnée des modèles numériques développés pour prédire les défauts liés à la solidification. L'alliage choisi dans notre travail est l'étain-plomb, vue sa basse température de fusion. Les expériences envisagées visent à étudier l'effet de deux modes de configuration dynamique sur la solidification de l'alliage Sn-Pb: la convection thermosolutale avec la variation de deux paramètres essentiels (la vitesse de refroidissement et la différence de température expérimentale) et la convection forcée par l'utilisation de plusieurs modes de brassage électromagnétique. Cette étude s'intéresse en particulier à la caractérisation des macrostructures et les défauts liés à la macroségrégation. L'originalité de l'étude vise à mesurer in situ les températures instantanées. Ceci nous a permis d'évaluer l'évolution du transfert thermique due à la convection naturelle/forcée, ainsi que leurs influence sur le processus de la solidification sous différents aspects. L'analyse post-mortem de l'alliage métallique, fournit la structure de solidification et la distribution des ségrégations à différentes échelles (mésoscopique et macroscopique). / This work is situated in the context of control of the solidification of metallic alloys structure under the effect of natural and forced convection to enhance control of solidification microstructures term through effective electromagnetic stirring to have a homogenizing the liquid which may subsequently improve the final microstructure of the alloy. The possibility considered in this work is to achieve this stirring without contacting the liquid solution (alloy in fusion) and pollution by other elements using a patch by the Lorentz force. The purpose of the thesis consists both a theoretical and experimental study based on an experimental setup particularly documented and instrumented developed / EPM SIMAP laboratory in Grenoble, named AFRODITE. The experimental device used to provide quantitative and qualitative data on the process of solidification of metallic alloys. These data are necessary for the contribution to studies on the solidification of metallic alloys and enrich the data base developed numerical models to predict defects related to solidification. The alloy selected from our work is tin-lead, for its low melting temperature. The proposed experiments are designed to study the effect of two types of dynamic configuration on the solidification of Sn-Pb alloy: the thermosolutal convection with the variation of two essential parameters (cooling rate and the difference in experimental temperature) and forced convection by the use of several modes of electromagnetic stirring. This study is particularly interested in the characterization of macrostructures and defects related to macrosegregation. The originality of this study is to measure in situ instantaneous temperatures. This allowed us to assess the evolution of the heat transfer due to natural / forced convection and their influence on the process of solidification in different aspects. The post-mortem analysis of the metal alloy provides the solidification structure and distribution of segregation at different scales (mesoscopic and macroscopic).
12

Segregacao e difusao de defeitos induzidos por radiacao em ligas binarias de cobre

MONTEIRO, WALDEMAR A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:31:47Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:06Z (GMT). No. of bitstreams: 1 02244.pdf: 4326578 bytes, checksum: 834efdf150538f542e76a841e126035c (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
13

Segregacao e difusao de defeitos induzidos por radiacao em ligas binarias de cobre

MONTEIRO, WALDEMAR A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:31:47Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:01:06Z (GMT). No. of bitstreams: 1 02244.pdf: 4326578 bytes, checksum: 834efdf150538f542e76a841e126035c (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
14

Beiträge zur röntgenradioskopischen Visualisierung und Charakterisierung von Erstarrungsvorgängen und zweiphasigen Strömungsphänomenen in metallischen Schmelzen

Boden, Stephan 20 October 2020 (has links)
Röntgenradioskopische Bildgebungsverfahren ermöglichen es, ein besseres Verständnis der zweiphasigen Strömungsphänomene und der Prozesse der Mikrostrukturentstehung während der Erstarrung in Metallschmelzen intuitiv zu gewinnen, da diese Verfahren die innere Gestalt der sonst undurchsichtigen Flüssigkeiten abbilden. In der vorliegenden Arbeit wurden dazu Untersuchungen zu zwei unterschiedlichen Teilaufgaben durchgeführt. Zum einen wurde die Dichteverteilung in dünnen Erstarrungsproben in Echtzeit und in-situ mit räumlichen Auflösungen von wenigen Mikrometern untersucht, um den Einfluss natürlicher und erzwungener Schmelzenströmungen auf die Erstarrung einer binären Gallium-Indium-Metalllegierung experimentell nachzuweisen. Zum anderen wurden Gasblasenströmungen in nichttransparenten Metallschmelzen nicht-invasiv und in-situ visualisiert und charakterisiert, um Kenntnis der Eigenschaften und der Bewegung von Argon-Einzelblasen und Blasenketten in flüssigem Gallium-Indium-Zinn ohne und unter dem Einfluss eines externen magnetischen Feldes zu erlangen. Diese experimentellen Untersuchungen wurden mit einem Mikrofokus-Röntgenbildgebungssystem durchgeführt. Die Implementation angepasster Bildverarbeitungs-algorithmen ermöglichte die präzise quantitative Vermessung der dendritischen Strukturparameter und der Wachstumsgeschwindigkeiten. Die Strömungsgeschwindigkeiten in der Schmelze vor der Erstarrungsfront wurden durch Berechnung des optischen Flusses in den Röntgenbildsequenzen vermessen. Thermosolutale Konvektionsbewegungen und der Einfluss magnetisch angetriebener erzwungener Schmelzenströmung auf die Gefügeentstehung konnten durch die Röntgenvisualisierung nachgewiesen werden. Die lokale Akkumulation angereicherter Schmelze, das Aufschmelzen von Dendritenarmen und das Entstehen von Entmischungskanälen im Zweiphasengebiet hinter der Erstarrungsfront wurden unmittelbar beobachtet. Für die Untersuchung des Verhaltens von Gasblasen in einer schmalen Flüssigmetall-Blasensäule wurde das Röntgenbildgebungssystem modifiziert. Das ermöglichte die Vermessung der Gasblasengrößen, der Trajektorien und der Geschwindigkeiten zur Charakterisierung der Blasenströmungen. Die Abhängigkeit der Gasblasengrößen von der Benetzung der Mündungsöffnung wurde gezeigt. Vergleichsexperimente im Gas-Wasser-System verdeutlichten die signifikanten Unterschiede der zweiphasigen Gas-Flüssigmetall-Strömungen. / X-ray radioscopic imaging methods enables one to intuitively gain a better understanding of the two-phase flow phenomena and the processes of microstructure formation during solidification in molten metals, as these methods depict the internal shape of the otherwise opaque liquids. In the present work, investigations were carried out on two different subtasks. On one hand, the density distribution in thin solidification samples was investigated in real time and in-situ with a spatial resolution of a few micrometers in order to demonstrate experimentally the influence of natural and forced melt flow on the solidification of a binary gallium-indium (GaIn) metal alloy. On the other hand, gas bubble flows in non-transparent metal melts were visualized and characterized non-invasively and in-situ in order to gain knowledge of the properties and the movement of individual argon bubbles and bubble chains in liquid gallium-indium-tin (GaInSn) without and under the influence of an external magnetic field. These experimental studies were performed with a microfocus X-ray imaging system. The implementation of adapted image processing algorithms enabled the precise quantitative measurement of the dendritic structure parameters and the growth rates. The flow velocities in the melt in front of the solidification front were measured by calculating the optical flow in the X-ray image sequences. Thermosolutal convection and the influence of magnetically driven forced melt flow on the formation of the structure could be demonstrated by the X-ray visualization. The local accumulation of enriched melt, the melting of dendrite arms and the emergence of segregation channels in the two-phase area behind the solidification front were observed directly. The X-ray imaging system was modified to study the behavior of gas bubbles in a narrow column of liquid metal bubbles. This made it possible to measure the gas bubble sizes, the trajectories and the velocities to characterize the bubble flows. The dependence of the gas bubble sizes on the wetting of the nozzle opening was shown. Comparative experiments in the gas-water system clearly revealed the significant differences in two-phase gas-liquid metal flows.
15

Studies On Momentum, Heat And Mass Transfer In Binary Alloy Solidification Processes

Chakraborty, Suman 09 1900 (has links)
The primary focus of the present work is the development of macro-models for numerical simulation of binary alloy solidification processes, consistent with microscopic phase-change considerations, with a particular emphasis on capturing the effects of non-equilibrium species redistribution on overall macrosegregation behaviour. As a first step, a generalised macroscopic framework is developed for mathematical modelling of the process. The complete set of equivalent single-phase governing equations (mass, momentum, energy and species conservation) are solved following a pressure-based Finite Volume Method according to the SIMPLER algorithm. An algorithm is also developed for the prescription of the coupling between temperature and the melt-fraction. Based on the above unified approach of solidification modelling, a macroscopic numerical model is devised that is capable of capturing the interaction between the double-diffusive convective field and a localised fluid flow on account of solutal undercooling during non-equilibrium solidification of binary alloys. Numerical simulations are performed for the case of two-dimensional transient solidification of Pb-Sn alloys, and the simulation results are also compared with the corresponding experimental results quoted in the literature. It is observed that non-equilibrium effects on account of solutal undercooling result in an enhanced macrosegregation. Next, the model is extended to capture the effects of dendritic arm coarsening on the macroscopic transport phenomena occurring during a binary alloy solidification process. The numerical results are first tested against experimental results quoted in the literature, corresponding to the solidification of an Al-Cu alloy in a bottom-cooled cavity. It is concluded that dendritic arm coarsening leads to an increased effective permeability of the mushy region as well as an enhanced eutectic fraction of the solidified ingot. Consequently, an enhanced macrosegregation can be predicted as compared to that dictated by shrinkage-induced fluid flow alone. For an order-of-magnitude assessment of predictions from the numerical models, a systematic approach is subsequently developed for scaling analysis of momentum, heat and species conservation equations pertaining to the case of solidification of a binary mixture. A characteristic velocity scale inside the mushy region is derived, in terms of the morphological parameters of the two-phase region. A subsequent analysis of the energy equation results in an estimation of the solid layer thickness. It is also shown from scaling principles that non-equilibrium effects result in an enhanced macro-segregation compared to the case of an equilibrium model For the sake of assessment of the scaling analysis, the predictions are validated against computational results corresponding to the simulation of a full set of governing equations, thus confirming the trends suggested by the scale analysis. In order to analytically investigate certain limiting cases of unidirectional alloy solidification, a fully analytical solution technique is established for the solution of unidirectional, conduction-dominated, alloy solidification problems. The results are tested for the problem of solidification of an ammonium chloride-water solution, and are compared with those from existing analytical models as well as with the corresponding results from a fully numerical simulation. The effects of different microscopic models on solidification behaviour are illustrated, and transients in temperature and heat flux distribution are also analysed. An excellent agreement between the present solutions and results from the computational simulation can be observed. The generalised numerical model is subsequently utilised to investigate the effects of laminar double-diffusive Rayleigh-Benard convection on directional solidification of binary fluids, when cooled and solidified from the top. A series of experiments is also performed with ammonium chloride-water solutions of hypoeutectic and hypereutectic composition, so as to facilitate comparisons with numerical predictions. While excellent agreements can be obtained for the first case, the second case results in a peculiar situation, where crystals nucleated on the inner roof of the cavity start descending through the bulk fluid, and finally settle down at the bottom of the cavity in the form of a sedimented solid layer. An eutectic solidification front subsequently progresses from the top surface vertically downwards, and eventually meets the heap of solid crystals collected on the floor of the cavity. However, comparison of experimental observations with corresponding numerical results from the present model is not possible under this situation, since the associated transport process involves a complex combination of a number of closely interconnected physical mechanisms, many of which are yet to be resolved. Subsequent to the development of the mathematical model and experimental arrangements for macroscopic transport processes during an alloy solidification process, some of the important modes of double-diffusive instability are analytically investigated, as a binary alloy of any specified initial composition is directionally solidified from the top. By employing a close-formed solution technique, the critical liquid layer heights corresponding to the onset of direct mode of instability are identified, corresponding two a binary alloy with three different initial compositions. In order to simulate turbulent transport during non-equilibrium solidification processes of binary alloys, a modified k-8 model is subsequently developed. Particular emphasis is given for appropriate modelling of turbulence parameters, so that the model merges with single-phase turbulence closure equations in the pure liquid region in a smooth manner. Laboratory experiments are performed using an ammonium chloride-water solution that is solidified by cooling from the top of a rectangular cavity. A good agreement between numerical and experimental results is observed. Finally, in order to study the effects of three-dimensionality in fluid flow on overall macrosegregation behaviour, the interaction between double-diffusive convection and non-equilibrium solidification of a binary mixture in a cubic enclosure (cooled from a side) is numerically investigated using a three-dimensional transient mathematical model. Investigations are carried out for two separate model systems, one corresponding to a typical metal-ally analogue system and other corresponding to an actual metal-alloy system. As a result of three-dimensional convective flow-patterns, a significant solute macrosegregation is observed in the transverse sections of the cavity, which cannot be captured by two-dimensional simulations.
16

Studies on Multiphase, Multi-scale Transport Phenomena in the Presence of Superimposed Magnetic Field

Sarkar, Sandip January 2016 (has links) (PDF)
Multiphase transport phenomena primarily encompass the fundamental principles and applications concerning the systems where overall dynamics are precept by phase change evolution. On the other hand, multiscale transport phenomena essentially corroborate to a domain where the transport characteristics often contain components at disparate scales. Relevant examples as appropriate to multiphase and multiscale thermofluidic transport phenomena comprise solid-liquid phase change during conventional solidification process and hydrodynamics through narrow confinements. The additional effect of superimposed magnetic field over such multiphase and multiscale systems may give rise to intriguing transport characteristics, significantly unique in nature as compared to flows without it. The present investigation focuses on multiphase, multi-scale transport phenomena in physical systems subjected to the superimposed magnetic field, considering four important and inter-linked aspects. To begin with, for a multiphase system concerning binary alloy solidification, a normal mode linear stability analysis has been carried out to investigate stationary and oscillatory convective stability in the mushy layer in the presence of external magnetic field. The stability results indicate that the critical Rayleigh number for stationary convection shows a linear relationship with increasing Ham (mush Hartmann number). Magnetohydrodynamic effect imparts a stabilizing influence during stationary convection. In comparison to that of stationary convective mode, the oscillatory mode appears to be critically susceptible at higher values of  (a function of the Stefan number and concentration ratio), and vice versa for lower  values. Analogous to the behaviour for stationary convection, the magnetic field also offers a stabilizing effect in oscillatory convection and thus influences global stability of the mushy layer. Increasing magnetic strength shows reduction in the wavenumber and in the number of rolls formed in the mushy layer. In multiscale paradigm, the combined electroosmotic and pressure-driven transport through narrow confinements have been firstly analyzed with an effect of spatially varying non–uniform magnetic field. It has been found that a confluence of the steric interactions with the degree of wall charging (zeta potential) may result in heat transfer enhancement, and overall reduction in entropy generation of the system under appropriate conditions. In particular, it is revealed that a judicious selection of spatially varying magnetic field strength may lead to an augmentation in the heat transfer rate. It is also inferred that incorporating non–uniformity in distribution of the applied magnetic field translates the system to be dominated by the heat transfer irreversibility. Proceeding further, a semi-analytical investigation has been carried out considering implications of magnetohydrodynamic forces and interfacial slip on the heat transfer characteristics of streaming potential mediated flow in narrow fluidic confinements. An augmentation in the streaming potential field as attributable to the wall slip activated enhanced electromagnetohydrodynamic transport of the ionic species within the EDL has been found. Furthermore, the implications of Stern layer conductivity and magnetohydrodynamic influence on system irreversibility have been shown through analysis of entropy generation due to fluid friction and heat transfer. The results being obtained in this analysis have significant scientific and technological consequences in the context of novel design of future generation energy efficient devices, and can be useful in the further advancement of theory, simulation, and experimental work. Finally, the combined consequences of interfacial electrokinetics, rheology, and superimposed magnetic field subjected to a non-Newtonian (power-law obeying) fluid in a narrow confinement are studied in this work. The theoretical results demonstrate that the applied magnetic field imparts a retarding influence in the induced streaming potential development, whereas, triggers the heat transfer magnitude. Moreover, additional influences of power law index show reduction in heat transfer as well as the streaming potential magnitude. It is unveiled that the optimal combinations of power law index and the magnetic field lead to the minimization of the global total entropy generation in the system.
17

Microstructural Phase Evolution In Laser Deposited Compositionally Graded Titanium Chromium Alloys

Thomas, Jonova 05 1900 (has links)
A compositionally graded Ti-xCr (10≤x≤30 wt%) alloy has been fabricated using Laser Engineered Net Shaping (LENSTM) to study the microstructural phase evolution along a compositional gradient in both as-deposited and heat treated conditions (1000°C followed by furnace cooling or air cooling). The alloys were characterized by SEM BSE imaging, XRD, EBSD, TEM and micro-hardness measurements to determine processing-structure-property relations. For the as-deposited alloy, α-Ti, β-Ti, and TiCr2 (C15 Laves) phases exist in varying phase fractions, which were influential in determining hardness values. With the furnace cooled alloy, there was more homogeneous nucleation of α phase throughout the sample with a larger phase fraction of TiCr2 resulting in increased hardness values. When compared to the air cooled alloy, there was absence of wide scale nucleation of α phase and formation of ω phase within the β phase due to the quicker cooling from elevated temperature. At lower concentrations of Cr, the kinetics resulted in a diffusionless phase transformation of ω phase with increased hardness and a lower phase fraction of TiCr2. In contrast at higher Cr concentrations, α phase separation reaction occurs where the β phase is spinodally decomposed to Cr solute-lean β1 and solute-rich β2 resulting in reduced hardness.
18

Influence Of Cross-Section Change During Directional Solidification On Dendrite Morphology, Macrosegregation And Defect Formation In Pb-6 wt Sb Alloy

Lacdao, Claudine 25 August 2017 (has links)
No description available.

Page generated in 0.0696 seconds