• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A model for credit risk of banking sector Fortress / Um modelo de risco de crÃdito para o setor bancÃrio de Fortaleza

Marcus Vinicius Pereira Lima 05 March 2012 (has links)
nÃo hà / The paper develops a tool for modeling the bank credit risk and applies this to banking market of Fortaleza. Using data from a large commercial bank of the city for 290 customers with active accounts and minimum income of six hundred reais, were selected 23 control variables and was estimated the probability of default on the modalities check and other credit restrictions. The results showed that: i) females are less likely to face restrictions, although this is not a determinant of emissions of bad checks; ii) people who have insurance contracted with the bank showed themselves more likely to default and iii) the extent of the bank rating proposal was effective in measuring the chance of credit risk. / O trabalho desenvolve uma ferramenta para modelar o risco de crÃdito bancÃrio e aplica ao mercado bancÃrio de Fortaleza. A partir de dados de um grande banco comercial da cidade para 290 clientes com contas ativas e renda mÃnima de seiscentos reais, foram selecionadas 23 variÃveis de controle e estimou-se a probabilidade de inadimplÃncia nas modalidades cheque e demais restriÃÃes de crÃdito. Os resultados demonstram que: i) indivÃduos do sexo feminino possuem menos chance de enfrentar restriÃÃes, muito embora este nÃo seja um determinante das emissÃes de cheques sem fundos; ii) os indivÃduos que possuem seguro contratado junto ao banco apresentaram maior chance de inadimplÃncia e iii) a medida de rating proposta pelo banco se mostrou eficaz em mensurar a chance de risco de crÃdito.
2

Perfil das famílias tomadoras de crédito no Brasil: caracterização a partir de um modelo desenvolvido com microdados da POF 2008/09

Mendonça, Danilo Marques de 28 May 2014 (has links)
Made available in DSpace on 2016-04-26T20:48:41Z (GMT). No. of bitstreams: 1 Danilo Marques de Mendonca.pdf: 845535 bytes, checksum: 668ae8796a8ad81784166717cbbe69bc (MD5) Previous issue date: 2014-05-28 / After the period of monetary stabilization started with the Real Plan in 1994 , the credit market has shown annual growth rates of 20 %. About 40 % of this growth came from the credit market for individuals . This paper analyzed the profile of the families who have credit expenses, and what changes in their characteristics can cause any effect in their propensity to take credit . For this purpose we applied binary logit choice model based on microdata from the Household Budget Survey (POF 2008 / 09 ) of the IBGE, in an attempt to measure the probability of the family take a loan. For this, we used categorical variables relating to the constitution of families, such as education level, sex, race and age of household head, and other information on the composition of household expenditures found in POF. The data suggest that the two most important factors to increase the likelihood of family borrowing is the age of the household head and income per capita. However other factors also contribute significantly, such as the existence of financial investment spending , expend with reform the household or even health spending, children's age, sex, race and education of household head / Após o período de estabilização monetária iniciado com o Plano Real em 1994, o mercado de crédito brasileiro vem apresentando taxas de crescimento anuais nominais acima de 20%. Cerca de 40% deste crescimento advêm do mercado de crédito direcionado às pessoas físicas. Neste trabalho é analisado o perfil das famílias que possuem despesas com crédito, e quais mudanças em suas características podem causar alterações em sua propensão a tomar crédito. Para tal objetivo foi aplicado o modelo de escolha binária logit à base dos microdados da Pesquisa de Orçamento Familiar (POF 2008/09) do IBGE, na tentativa de mensurar a probabilidade da família ser tomadora de crédito. Para tanto, são usadas variáveis categóricas referentes à constituição das famílias, como: grau de escolaridade, sexo, raça e idade do chefe da família, além de outras informações sobre a composição das despesas familiares encontradas na POF. Os dados sugerem que os fatores mais relevantes a aumentar a probabilidade da família tomar empréstimos são a idade do chefe da família e a renda per capita. No entanto outros fatores também contribuem significativamente, tais como a existência de gastos com aplicação financeira, gastos com reforma do domicílio ou mesmo com saúde emergencial, idade dos filhos, sexo, raça e educação do chefe da família
3

Asymptotic Analysis for Nonlinear Spatial and Network Econometric Models

Xu, Xingbai, Xu 28 September 2016 (has links)
No description available.
4

Contribution à la statistique spatiale et l'analyse de données fonctionnelles / Contribution to spatial statistics and functional data analysis

Ahmed, Mohamed Salem 12 December 2017 (has links)
Ce mémoire de thèse porte sur la statistique inférentielle des données spatiales et/ou fonctionnelles. En effet, nous nous sommes intéressés à l’estimation de paramètres inconnus de certains modèles à partir d’échantillons obtenus par un processus d’échantillonnage aléatoire ou non (stratifié), composés de variables indépendantes ou spatialement dépendantes.La spécificité des méthodes proposées réside dans le fait qu’elles tiennent compte de la nature de l’échantillon étudié (échantillon stratifié ou composé de données spatiales dépendantes).Tout d’abord, nous étudions des données à valeurs dans un espace de dimension infinie ou dites ”données fonctionnelles”. Dans un premier temps, nous étudions les modèles de choix binaires fonctionnels dans un contexte d’échantillonnage par stratification endogène (échantillonnage Cas-Témoin ou échantillonnage basé sur le choix). La spécificité de cette étude réside sur le fait que la méthode proposée prend en considération le schéma d’échantillonnage. Nous décrivons une fonction de vraisemblance conditionnelle sous l’échantillonnage considérée et une stratégie de réduction de dimension afin d’introduire une estimation du modèle par vraisemblance conditionnelle. Nous étudions les propriétés asymptotiques des estimateurs proposées ainsi que leurs applications à des données simulées et réelles. Nous nous sommes ensuite intéressés à un modèle linéaire fonctionnel spatial auto-régressif. La particularité du modèle réside dans la nature fonctionnelle de la variable explicative et la structure de la dépendance spatiale des variables de l’échantillon considéré. La procédure d’estimation que nous proposons consiste à réduire la dimension infinie de la variable explicative fonctionnelle et à maximiser une quasi-vraisemblance associée au modèle. Nous établissons la consistance, la normalité asymptotique et les performances numériques des estimateurs proposés.Dans la deuxième partie du mémoire, nous abordons des problèmes de régression et prédiction de variables dépendantes à valeurs réelles. Nous commençons par généraliser la méthode de k-plus proches voisins (k-nearest neighbors; k-NN) afin de prédire un processus spatial en des sites non-observés, en présence de co-variables spatiaux. La spécificité du prédicteur proposé est qu’il tient compte d’une hétérogénéité au niveau de la co-variable utilisée. Nous établissons la convergence presque complète avec vitesse du prédicteur et donnons des résultats numériques à l’aide de données simulées et environnementales.Nous généralisons ensuite le modèle probit partiellement linéaire pour données indépendantes à des données spatiales. Nous utilisons un processus spatial linéaire pour modéliser les perturbations du processus considéré, permettant ainsi plus de flexibilité et d’englober plusieurs types de dépendances spatiales. Nous proposons une approche d’estimation semi paramétrique basée sur une vraisemblance pondérée et la méthode des moments généralisées et en étudions les propriétés asymptotiques et performances numériques. Une étude sur la détection des facteurs de risque de cancer VADS (voies aéro-digestives supérieures)dans la région Nord de France à l’aide de modèles spatiaux à choix binaire termine notre contribution. / This thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country.

Page generated in 0.0538 seconds