• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 15
  • 15
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

The construction of the Aids patient in South African bio-medical discourse

Lightfoot, Neil Gordon 09 1900 (has links)
The humanised Aids patient increasingly finds itself a part of mainstream popular rhetoric. There was a time however, when the Aids patient was no more than a disease ravaged corpse without rights. Conventional histories and analyses tend to gloss over this fact, or argue that the new, authentic patient is a triumph of wisdom over brute ignorance, fear and superstition. Such accounts overlook their own role and the part played by the bio-medical sciences in constructing the Aids patient. This thesis, in contradistinction, traces the Aids patient's portrayal in South African bio-medical discourses, applying to it the work of Michel Foucault. In doing so the dynamic interactions of power and knowledge are brought under the spotlight. / Psychology / M.A. (Psychology)
12

Low Power Analog Interface Circuits toward Software Defined Sensors

Qin, Yajie January 2016 (has links)
Internet of Things is expanding to the areas such as healthcare, home management, industrial, agriculture, and becoming pervasive in our life, resulting in improved efficiency, accuracy and economic benefits. Smart sensors with embedded interfacing integrated circuits (ICs) are important enablers, hence, variety of smart sensors are required. However, each type of sensor requires specific interfacing chips, which divides the huge market of sensors’ interface chips into lots of niche markets, resulting in high develop cost and long time-to-market period for each type. Software defined sensor is regarded as a promising solution, which is expected to use a flexible interface platform to cover different sensors, deliver specificity through software programming, and integrate easily into the Internet of Things. In this work, research is carried out on the design and implementations of ultra low power analog interface circuits toward software defined sensors for healthcare services based on Internet of Things.    This thesis first explores architectures and circuit techniques for energy-efficient and flexible analog to digital conversion. A time-spreading digital calibration, to calibrate the errors due to finite gain and capacitor mismatch in multi-bit/stage pipelined converters, is developed with short convergence time. The effectiveness of the proposed technique is demonstrated with intensive simulations. Two novel circuit level techniques, which can be combined with digital calibration techniques to further improve the energy efficiency of the converters, are also presented. One is the Common-Mode-Sensing-and-Input-Interchanging (CSII) operational-transconductance-amplifier (OTA) sharing technique to enable eliminating potential memory effects. The other is a workload-balanced multiplying digital-to-analog converter (MDAC) architecture to improve the settling efficiency of a high linear multi-bit stage. Two prototype converters have been designed and fabricated in 0.13 μm CMOS technology. The first one is a 14 bit 50 MS/s digital calibrated pipelined analog to digital converter that employs the workload-balanced MDAC architecture and time-spreading digital calibration technique to achieve improved power-linearity tradeoff. The second one is a 1.2 V 12 bit 5~45 MS/s speed and power-scalable ADC incorporating the CSII OTA-sharing technique, sample-and-hold-amplifier-free topology and adjustable current bias of the building blocks to minimize the power consumption. The detailed measurement results of both converters are reported and deliver the experimental verification of the proposed techniques.     Secondly, this research investigates ultra-low-power analog front-end circuits providing programmability and being suitable for different types of sensors. A pulse-width- -modulation-based architecture with a folded reference is proposed and proven in a 0.18 μm technology to achieve high sensitivity and enlarged dynamic range when sensing the weak current signals. A 8-channel bio-electric sensing front-end, fabricated in a 0.35 μm CMOS technology is also presented that achieves an input impedance of 1 GΩ, input referred noise of 0.97 Vrms and common mode rejection ratio of 114 dB. With the programmable gain and cut-off frequency, the front-end can be configured to monitor for long-term a variety of bio-electric signals, such as electrooculogram (EOG), electromyogram (EMG), electroencephalogram (EEG) and electrocardiogram (ECG) signals. The proposed front-end is integrated with dry electrodes, a microprocessor and wireless link to build a battery powered E-patch for long-term and continuous monitoring. In-vivo test results with dry electrodes in the field trials of sitting, standing, walking and running slowly, show that the quality of ECG signal sensed by the E-patch satisfies the requirements for preventive cardiac care.    Finally, a wireless multimodal bio-electric sensor system is presented. Enabled by a customized flexible mixed-signal system on chip (SoC), this bio-electric sensor system is able to be configured for ECG/EMG/EEG recording, bio-impedance sensing, weak current stimulation, and other promising functions with biofeedback. The customized SoC, fabricated in a 0.18 μm CMOS technology, integrates a tunable analog front-end, a 10 bit ADC, a 14 bit sigma-delta digital to current converter, a 12 bit digital to voltage converter, a digital accelerator for wavelet transformation and data compression, and a serial communication protocol. Measurement results indicate that the SoC could support the versatile bio-electric sensor to operate in various applications according to specific requirements. / <p>QC 20151221</p>
13

The construction of the Aids patient in South African bio-medical discourse

Lightfoot, Neil Gordon 09 1900 (has links)
The humanised Aids patient increasingly finds itself a part of mainstream popular rhetoric. There was a time however, when the Aids patient was no more than a disease ravaged corpse without rights. Conventional histories and analyses tend to gloss over this fact, or argue that the new, authentic patient is a triumph of wisdom over brute ignorance, fear and superstition. Such accounts overlook their own role and the part played by the bio-medical sciences in constructing the Aids patient. This thesis, in contradistinction, traces the Aids patient's portrayal in South African bio-medical discourses, applying to it the work of Michel Foucault. In doing so the dynamic interactions of power and knowledge are brought under the spotlight. / Psychology / M.A. (Psychology)
14

Charakterizace a aplikace mikrovlnného plazmatu pro hojení ran / Characterization and application of microwave plasma on wound healing

Smejkalová, Kateřina January 2020 (has links)
The aim of the Master thesis is the investigation of the influence of microwave discharge for skin wound healing. Microwave discharge used for this work was argon microwave plasma generated by the surface wave and direct vortex torch. The theoretical part is focused on basic information about plasma and processes that occur in plasma discharge under specific conditions. Plasma generates various active particles such as hydroxyl radicals, nitric oxide radicals, excited nitrogen molecules, atomic nitrogen, argon and oxygen. All of these particles together with plasma generated photons are usable in biomedical applications and summary of them is shown in the theoretical part. The experimental part is focused on the comparison of torch discharge and microwave plasma generated surface wave in skin wound healing. The model wounds on laboratory mousses were treated by plasma and wound healing was examined during 3 weeks after the plasma treatment. Both plasma systems showed healing acceleration. Application of torch discharge was proved to be the most effective method in the healing of skin defects. Additionally, determination of active particles was taken by optical emission spectroscopy. Based on these measurements, plasma parameters were determined: electron temparutare, rotational and vibrational temperatures. To determine role of different plasma active species, the treatment of indigo coloured artificial skin model was treated under various conditions by both plasma systems. Results show that the direct interaction between plasma particles is the main effect, role of radiation, only, is more or less negligible. Finally, the plasma vortex system was visualized using fast camera at selected powers and gas flows.
15

Hydrodynamical investigations of liquid ventilation by means of advanced optical measurement techniques

Janke, Thomas 20 August 2021 (has links)
Although liquid ventilation has been researched and studied for the last six decades, it did not achieve its expected optimal performance. Within this work, a deeper understanding of the fluid dynamics during liquid ventilation shall be gathered to extend the already available clinical knowledge about this ventilation strategy. In order to reach this goal, advanced optical flow measurement techniques are applied in different models of the human conductive airways to obtain global velocity fields, identifying prominent flow structures and to determine important dissolved oxygen transport paths. As the velocity measurements revealed, the evolving flow field is strongly dominated by secondary flow effects and is highly dependent on the local airway geometry. During the visualization experiments of the dissolved oxygen concentration fields, different transportation paths occur at inspirational and expirational flow. The initial concentration distribution can be linked to the underlying flow fields but decouples after the peak velocity phases. With higher flow rates/ tidal volumes, a more homogeneously distributed oxygen concentration can be reached.:List of Figures ....................................................................................... VII List of Tables ........................................................................................XIII Nomenclature ........................................................................................ XV 1 Introduction......................................................................................... 1 1.1 Motivation ........................................................................................1 1.2 Research objectives........................................................................... 3 1.3 Outline............................................................................................ 4 2 State of the art .................................................................................... 5 2.1 Liquid Ventilation............................................................................. 5 2.2 In vitro modeling.............................................................................. 8 2.3 Flow measurements ......................................................................... 11 2.4 Gas transport..................................................................................13 3 Flow field measurements ................................................................... 16 3.1 Hydrodynamic Model.......................................................................16 3.1.1 Lung replica ..........................................................................16 3.1.2 Flow parameter .....................................................................18 3.1.3 Limitations ...........................................................................22 3.2 Particle Tracking Velocimetry (PTV) ................................................24 3.2.1 Measurement principle ...........................................................24 3.2.2 Double-frame 2D-PTV ...........................................................25 3.2.3 Time-resolved 3D-PTV ..........................................................28 3.2.4 Phase-locked ensemble PTV ................................................... 31 3.3 Experimental set-up and measurement procedure ...............................33 3.3.1 Lung flow facility...................................................................33 3.3.2 2D-PTV configuration............................................................36 3.3.3 3D-PTV configuration............................................................36 3.4 Results & Discussion........................................................................38 3.4.1 Artificial lung........................................................................38 3.4.2 Realistic lung ........................................................................52 3.5 Conclusion ......................................................................................59 4 Oxygen transport ...............................................................................61 4.1 Hydrodynamic Model....................................................................... 61 4.1.1 Lung replica .......................................................................... 61 4.1.2 Flow parameter .....................................................................62 4.1.3 Limitations ...........................................................................65 4.2 Oxygen Sensitive Dye ......................................................................66 4.3 Experimental set-up......................................................................... 71 4.4 Results & Discussion........................................................................75 4.4.1 Constant flow rate .................................................................75 4.4.2 Oscillatory flow .....................................................................83 4.5 Conclusion ......................................................................................90 5 Summary............................................................................................ 92 6 Outlook .............................................................................................. 95 Bibliography ............................................................................................ 97 / Trotz intensiver Forschung in den letzten sechs Jahrzehnten, befindet sich die Flüssigkeitsbeatmung immernoch weit entfernt vom klinischen Alltag. Mit dieser Arbeit soll ein Beitrag geleistet werden, um das Wissen um die strömungsmechanischen Effekte während der Flüssigkeitsbeatmung zu vertiefen. Dazu werden verschiedene Modellexperimente durchgeführt, bei welchen moderne laseroptische Strömungsmessmethoden zum Einsatz kommen. Untersucht werden dabei unterschiedlich komplexe Geometrien der leitenden menschlichen Atemwege mit dem Ziel wesentliche Strömungsstrukturen, globale Geschwindigkeitsfelder und wichtige Transportwege des gelösten Sauerstoffs zu identifiziern. Die Geschwindigkeitsmessungen zeigen ein stark durch sekundäre Strömungseffekte dominiertes Geschwindigkeitsfeld, welches wesentlich von der lokalen Geometrie abhängig ist. Durch die qualitative und quantitative Erfassung der gelösten Sauerstoffkonzentrationsfelder können wichtige Transportwege aufgedeckt werden. Diese unterscheiden sich deutlich zwischen inspiratorischer und expiratorischer Strömungsrichtung. Die initialen Konzentrationsfelder stimmen mit den unterliegenden Geschwindigkeitsfeldern überein, unterscheiden sich ab der verzögernden Strömungsphase jedoch. Höhere Volumenströme/Tidalvolumen tragen dabei zu einer gleichmäßigeren Konzentrationsverteilung bei.:List of Figures ....................................................................................... VII List of Tables ........................................................................................XIII Nomenclature ........................................................................................ XV 1 Introduction......................................................................................... 1 1.1 Motivation ........................................................................................1 1.2 Research objectives........................................................................... 3 1.3 Outline............................................................................................ 4 2 State of the art .................................................................................... 5 2.1 Liquid Ventilation............................................................................. 5 2.2 In vitro modeling.............................................................................. 8 2.3 Flow measurements ......................................................................... 11 2.4 Gas transport..................................................................................13 3 Flow field measurements ................................................................... 16 3.1 Hydrodynamic Model.......................................................................16 3.1.1 Lung replica ..........................................................................16 3.1.2 Flow parameter .....................................................................18 3.1.3 Limitations ...........................................................................22 3.2 Particle Tracking Velocimetry (PTV) ................................................24 3.2.1 Measurement principle ...........................................................24 3.2.2 Double-frame 2D-PTV ...........................................................25 3.2.3 Time-resolved 3D-PTV ..........................................................28 3.2.4 Phase-locked ensemble PTV ................................................... 31 3.3 Experimental set-up and measurement procedure ...............................33 3.3.1 Lung flow facility...................................................................33 3.3.2 2D-PTV configuration............................................................36 3.3.3 3D-PTV configuration............................................................36 3.4 Results & Discussion........................................................................38 3.4.1 Artificial lung........................................................................38 3.4.2 Realistic lung ........................................................................52 3.5 Conclusion ......................................................................................59 4 Oxygen transport ...............................................................................61 4.1 Hydrodynamic Model....................................................................... 61 4.1.1 Lung replica .......................................................................... 61 4.1.2 Flow parameter .....................................................................62 4.1.3 Limitations ...........................................................................65 4.2 Oxygen Sensitive Dye ......................................................................66 4.3 Experimental set-up......................................................................... 71 4.4 Results & Discussion........................................................................75 4.4.1 Constant flow rate .................................................................75 4.4.2 Oscillatory flow .....................................................................83 4.5 Conclusion ......................................................................................90 5 Summary............................................................................................ 92 6 Outlook .............................................................................................. 95 Bibliography ............................................................................................ 97

Page generated in 0.0441 seconds