• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 188
  • 16
  • Tagged with
  • 204
  • 204
  • 204
  • 204
  • 204
  • 36
  • 31
  • 20
  • 19
  • 19
  • 18
  • 13
  • 13
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Numerical simulation of well stirred biochemical reaction networks governed by the master equation

Hellander, Andreas January 2008 (has links)
Numerical simulation of stochastic biochemical reaction networks has received much attention in the growing field of computational systems biology. Systems are frequently modeled as a continuous-time discrete space Markov chain, and the governing equation for the probability density of the system is the (chemical) master equation. The direct numerical solution of this equation suffers from an exponential growth in computational time and memory with the number of reacting species in the model. As a consequence, Monte Carlo simulation methods play an important role in the study of stochastic chemical networks. The stochastic simulation algorithm (SSA) due to Gillespie has been available for more than three decades, but due to the multi-scale property of the chemical systems and the slow convergence of Monte Carlo methods, much work is currently being done in order to devise more efficient approximate schemes. In this thesis we review recent work for the solution of the chemical master equation by direct methods, by exact Monte Carlo methods and by approximate and hybrid methods. We also describe two conceptually different numerical methods to reduce the computational time when studying models using the SSA. A hybrid method is proposed, which is based on the separation of species into two subsets based on the variance of the copy numbers. This method yields a significant speed-up when the system permits such a splitting of the state space. A different approach is taken in an algorithm that makes use of low-discrepancy sequences and the method of uniformization to reduce variance in the computed density function.
42

Numerical solution of the Fokker–Planck approximation of the chemical master equation

Sjöberg, Paul January 2005 (has links)
The chemical master equation (CME) describes the probability for the discrete molecular copy numbers that define the state of a chemical system. Each molecular species in the chemical model adds a dimension to the state space. The CME is a difference-differential equation which can be solved numerically if the state space is truncated at an upper limit of the copy number in each dimension. The size of the truncated CME suffers from an exponential growth for an increasing number of chemical species. In this thesis the chemical master equation is approximated by a continuous Fokker-Planck equation (FPE) which makes it possible to use sparser computational grids than for CME. FPE on conservative form is used to compute steady state solutions by computation of an extremal eigenvalue and the corresponding eigenvector as well as time-dependent solutions by an implicit time-stepping scheme. The performance of the numerical solution is compared to a standard Monte Carlo algorithm. The computational work for a solutions with the same estimated error is compared for the two methods. Depending on the problem, FPE or the Monte Carlo algorithm will be more efficient. FPE is well suited for problems in low dimensions, especially if high accuracy is desirable.
43

Nucleolar Ribosome Assembly

Lackmann, Fredrik January 2017 (has links)
Ribosomes are macromolecular machines that are responsible for production of every protein in a living cell. Yet we do not know the details about how these machines are formed. The ribosome consists of four RNA strands and roughly 80 proteins that associate with each other in the nucleolus and form pre-ribosomal complexes. Eukaryotes, in contrast to prokaryotes, need more than 200 non-ribosomal factors to assemble ribosomes. These associate with pre-ribosomal complexes at different stages as they travel from the nucleolus to the cytoplasm and are required for pre-rRNA processing. We do however lack knowledge about the molecular function of most of these factors and what enables pre-rRNA processing. Especially, information is missing about how non-ribosomal factors influence folding of the pre-rRNA and to what extent the pre-ribosomal complexes are restructured during their maturation.  This thesis aims to obtain a better understanding of the earliest events of ribosome assembly, namely those that take place in the nucleolus. This has been achieved by studying the essential protein Mrd1 by mutational analysis in the yeast Saccharomyces cerevisiae as well as by obtaining structural information of nucleolar pre-ribosomal complexes. Mrd1 has a modular structure consisting of multiple RNA binding domains (RBDs) that we find is conserved throughout eukarya. We show that an evolutionary conserved linker region of Mrd1 is crucial for function of the protein and likely forms an essential module together with adjacent RBDs. By obtaining structural information of pre-ribosomal complexes at different stages, we elucidate what structuring events occur in the nucleolus.  We uncover a direct role of Mrd1 in structuring the pre-rRNA in early pre-ribosomal complexes, which provides an explanation for why pre-rRNA cannot be processed in Mrd1 mutants. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Manuscript. Paper 4: Manuscript.</p>
44

Regulation of cellular Hsp70 : Proteostasis and aggregate management

Kaimal, Jayasankar Mohanakrishnan January 2017 (has links)
Proteins have to be folded to their native structures to be functionally expressed. Misfolded proteins are proteotoxic and negatively impact on cellular fitness. To maintain the proteome functional proteins are under the constant surveillance of dedicated molecular chaperones that perform protein quality control (PQC). Using the model organism yeast Saccharomyces cerevisiae this thesis investigates the molecular mechanisms that cells employ to maintain protein homeostasis (proteostasis). In Study I the role of the molecular chaperone Hsp110 in the disentanglement and reactivation of aggregated proteins was investigated. We found that Hsp110 is essential for cellular protein disaggregation driven by the molecular chaperones Hsp40, Hsp70 and Hsp104 and characterized its involvement via regulation of Hsp70 ATPase activity as a nucleotide exchange factor. In Study II we found out that Hsp110 undergoes translational frameshifting during its expression resulting in a nuclear targeting. Nuclear Hsp110 interacts with Hsp70 and reprograms the proteostasis system to better deal with stress and to confer longevity. Study III describes regulation of Hsp70 function in PQC by the nucleotide exchange factor Fes1. We found that rare alternative splicing regulates Fes1 subcellular localization in the cytosol and nucleus and that the cytosolic isoform has a key role in PQC. In Study IV we have revealed the molecular mechanism that Fes1 employ in PQC. We show that Fes1 carries a specialized release domain (RD) that ensures the efficient release of protein substrates from Hsp70, explaining how Fes1 maintains the Hsp70-chaperone system clear of persistent misfolded proteins. In Study V we report on the use of a novel bioluminescent reporter (Nanoluc) for use in yeast to measure the gene expression and protein levels. In summary, this thesis contributes to the molecular understanding of chaperone-dependent PQC mechanisms both at the level of individual components as well as how they interact to ensure proteostasis. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Manuscript. Paper 4: Manuscript.</p>
45

The effect of Edaravone on Amyloid beta aggregation

Berntsson, Elina January 2019 (has links)
Alzheimer’s disease (AD) is a devastating neurodegenerative disease that affect millions of people worldwide. Aggregation of Amyloid-β (Aβ) monomers create toxic oligomers that can interact with cellular membranes and disturb cellular functions, resulting in cell death and neurological dysfunction. Increased levels of oxidative stress have been shown in the brains of AD patients, something that besides the obvious cell and tissue toxicity, also favors the amyloidogenic pathway and generates more Aβ monomers. Here we show that Edaravone, a free radical scavenger can affect the aggregation rate of different lengths of Aβ. We show that Aβ-40 that is more commonly found in vivo aggregates faster with addition of Edaravone, while Aβ-42 aggregates slower or not at all. These findings add up to previous findings where free radical scavengers and antioxidants such as Edaravone have been suggested as a potential treatment in Alzheimer’s disease.
46

Functional and structural studies of the Presequence protease, PreP

Bäckman, Hans G January 2014 (has links)
AtPreP (Arabidopsis thaliana Presequence Protease) is a zink metallooligopeptidase that is dually targeted to both mitochondria and chloroplasts. In these organelles it functions as a peptidasome that degrades the N-terminal targeting peptides that are cleaved off from the mature protein after protein import, as well as other unstructured peptides. In A. thaliana there are two isoforms of PreP, AtPreP1 and AtPreP2.  We have performed characterization studies of single and double prep knockout plants. Immunoblot analysis revealed that both PreP isoforms are expressed in all tissues with highest expression levels in flowers and siliques. Furthermore, AtPreP1 was shown to be the most abundant isoform of the two. When comparing phenotype, the atprep2 mutant was similar to wild type, whereas the atprep1 mutant had a slight pale-green phenotype in the early developmental stages. The atprep1 atprep2 double knockout plants showed a chlorotic phenotype in true leaves, especially prominent during the early developmental stages. When analysing the first true leaves of double knockout plants, we found a significant decrease in chlorophyll a and b content. Mitochondrial respiratory rates measurements showed partially uncoupled mitochondria. Ultrastructure analysis using electron microscopy on double knockout plants showed aberrant chloroplasts with altered grana stacking and clearly fewer starch granules. Older plants showed less altered  phenotype, although there was a significant decrease in the accumulated biomass of about 40% compared to wild type. Peptidolytic activity studies showed no sign of compensatory mechanisms in the absence of AtPreP in mitochondria; in contrast we found a peptidolytic activity in the chloroplast membranes not related to AtPreP. In addition to zinc located in the catalytic site, crystallographic data revealed two Mg-binding sites in the AtPreP structure. To further investigate the role of these Mg-binding sites, we have made AtPreP variants that are unable to bind metal ions. Our data shows that one of these sites located close to the catalytic site is important for the activity of AtPreP. We also measured proteolytic activity of four human PreP-SNP variants and observed that the activity of all the hPreP-SNPs variants was lower; especially the hPreP-SNP (A525D) variant that displayed only 20-30 % of wild type activity. Interestingly, the activity was fully restored for all SNP-variants by addition of Mg2+.
47

Characterization of the Carnitine Transporter, OCTN2: Functional Impact of Mutations and Its Role in COVID-19 Treatment Related Drug-Drug Interactions

Rödin, Mattias January 2020 (has links)
<p>P.g.a COVID-19 gjordes presentationen på distans över zoom.</p>
48

Barrel opening in the two-partner-secretion transporter FhaC studied via gas-phase molecular dynamics simulations

Wei, Chongyao January 2022 (has links)
No description available.
49

Validation of a transgenic mouse line with knockdown of mGluR5 selectively in dopamine D1receptor expressing neurons

Nasr Esfahani, Ali January 2010 (has links)
One of the main difficulties of addiction treatment is the high risk of relapse even after a longabstinence and fully detoxification. Therefore, discovering the underlying molecular principlesof relapse is essential. The metabotropic glutamate receptor, mGluR5, is considered to beinvolved in this aspect. One of the brain structures expressing mGluR5 is the striatum, an areawith well-established role in addiction which is largely composed of medium-sized spinyneurons (MSNs). These neurons are basically divided into two major subpopulationscharacterized based on their projections and protein properties. It is known that the mGluR5receptor is expressed on both subpopulations of MSNs. Consequently, it can be used to establishthe proportional contribution of each of MSNs subpopulations in relapse to addiction. In ourconstellation, we have generated a mouse line designed to have a selective mGluR5 knock-downin one of these subpopulations – the dopamine D1 receptor (D1R) expressing neurons. It hashowever been unclear if the expression of the transgene is indeed limited to only D1R-expressingneurons. By immunofluorescence technique, I here show that the construct is expressed only inMSNs and is restricted to the D1R-expressing cell population in the striatum. Thus the transgenicmouse line is a good tool for the study of mGluR5 selectively in D1R expressing neurons.
50

On the role of ppGpp and DksA mediated control of σ54-dependent transcription

Bernardo, Lisandro January 2006 (has links)
The σ54-dependent Po promoter drives transcription of an operon that encodes a suite of enzymes for (methyl)phenols catabolism. Transcription from Po is controlled by the sensor-activator DmpR that binds (methyl)phenol effectors to take up its active form. The σ54 factor imposes kinetic constraints on transcriptional initiation by the σ54-RNA polymerase holoenzyme which cannot undergo transition from the closed complex without the aid of the activator. DmpR acts from a distance on promoter-bound σ54-holoenzyme, and physical contact between the two players is facilitated by the DNA-bending protein IHF. The bacterial alarmone ppGpp and DksA directly bind RNA polymerase to have far reaching consequences on global transcriptional capacity in the cell. The work presented in this thesis uses the DmpR-regulated Po promoter as a framework to dissect how these two regulatory molecules act in vivo to control the functioning of σ54-dependent transcription. The strategies employed involved development of i) a series of hybrid σ54-promoters that could be directly compared and in which key DNA elements could be manipulated ii) mutants incapable of synthesizing ppGpp and/or DksA, iii) reconstituted in vitro transcription systems, and iv) genetic selection and purification of mutant RNA polymerases that bypass the need for ppGpp and DksA in vivo. The collective results presented show that the effects of ppGpp and DksA on σ54-dependent transcription are major, with simultaneous loss of these regulatory molecules essentially abolishing σ54-transcription in intact cells. However, neither of these regulatory molecules have discernable effects on in vitro reconstituted σ54-transcription, suggesting an indirect mechanism of control. The major effects of ppGpp and DksA in vivo cannot be accounted for by consequent changes in the levels of DmpR or other specific proteins needed for σ54-transcription. The data presented here shows i) that the effects of loss of ppGpp and DksA are related to promoter affinity for σ54-holoenzyme, ii) that σ54 is under significant competition with other σ-factors in the cell, and iii) that mutants of σ70, and the beta- and beta prime-subunits of RNA polymerase that can bypass the need for ppGpp and DksA in vivo have defects that would favour the formation of σ54-RNA holoenzyme over that with σ70, and that mimic the effects of ppGpp and DksA for negative regulation of stringent σ70-promoters. A purely passive model for ppGpp/DksA regulation of σ54-dependent transcription that functions through their potent negative effects on transcription from powerful σ70-stringent promoters is presented.

Page generated in 0.1613 seconds