• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 641
  • 44
  • 1
  • Tagged with
  • 686
  • 669
  • 311
  • 310
  • 303
  • 141
  • 121
  • 106
  • 97
  • 92
  • 91
  • 91
  • 91
  • 91
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Method development for studying the interactions between antithrombin and heparin

Elnerud, Maja January 2008 (has links)
Antithrombin (AT) is one of the most important anticoagulant factors in the blood, and its effects are increased by the interaction with glycosaminoglycans, especially heparin. AT appears in two additional variants, other than the native form, and those variants have antiangiogenic properties and also bind to heparin. AT is found in two distinct isoforms (alfa, beta) where the difference lie in the degree of glycosylation. This project has shown interesting results regarding the dependence of calcium ions on the binding between heparin and antithrombin. The results show that the beta-isoform increases its affinity for heparin in the presence of calcium in contrast to the alfa-isoform, which shows a decrease in the heparin affinity under the same conditions. This project has also given results that after further investigation and development could be used for an improved set-up of the immobilisation of AT variants in a surface plasmon resonance system. The results show that immobilisation of a protein in the reference channel gives a better shielding effect between the negatively charged heparin molecules and the negatively charged dextran matrix. Furthermore a more significant difference was seen between the two heparin moieties used during binding affinity studies, especially for native AT.
192

Protein targeting, translocation and insertion in Escherichia coli : Proteomic analysis of substrate-pathway relationships

Baars, Louise January 2007 (has links)
Approximately 10% of the open reading frames in the genome of the Gram-negative bacterium E. coli encodes secretory proteins, and 20% encodes integral inner membrane proteins (IMPs). These proteins are sorted to their correct cellular compartments (the periplasm and the outer and inner membranes) by specialized targeting and translocation/insertion systems. So far, a very limited set of model proteins have been used to study proteins sorting requirements in E. coli. The main objective of all the papers presented in this thesis was to determine the targeting and translocation/insertion requirements of more E. coli proteins. In papers I and II, this was done using focused approaches. Selected model proteins (lipoproteins and putative outer membrane proteins) were expressed from plasmids and their targeting and translocation were analysed in vitro by crosslinking experiments and/or in vivo by pulse-chase analysis in different E. coli mutant strains. In papers III a comparative sub-proteome analysis was carried out to define the role of the cytoplasmic chaperone SecB in protein targeting. In paper IV, a similar approach was used to study how protein translocation and insertion is affected upon depletion of the essential Sec-translocon component SecE. The ‘global’ approach used in paper III and IV allowed us to study protein targeting and translocation/insertion requirements on a proteome level. This led to the identification of several novel SecB substrates and a large number of potential Sec-translocon independent IMPs.
193

Molecular Aspects of Transthyretin Amyloid Disease

Sörgjerd, Karin January 2008 (has links)
This thesis was made to get a deeper understanding of how chaperones interact with unstable, aggregation prone, misfolded proteins involved in human disease. Over the last two decades, there has been much focus on misfolding diseases within the fields of biochemistry and molecular biotechnology research. It has become obvious that proteins that misfold (as a consequence of a mutation or outer factors), are the cause of many diseases. Molecular chaperones are proteins that have been defined as agents that help other proteins to fold correctly and to prevent aggregation. Their role in the misfolding disease process has been the subject for this thesis. Transthyretin (TTR) is a protein found in human plasma and in cerebrospinal fluid. It works as a transport protein, transporting thyroxin and holo-retinol binding protein. The structure of TTR consists of four identical subunits connected through hydrogen bonds and hydrophobic interactions. Over 100 point mutations in the TTR gene are associated with amyloidosis often involving peripheral neurodegeneration (familial amyloidotic polyneuropathy (FAP)). Amyloidosis represents a group of diseases leading to extra cellular deposition of fibrillar protein known as amyloid. We used human SH-SY5Y neuroblastoma cells as a model for neurodegeneration. Various conformers of TTR were incubated with the cells for different amounts of time. The experiments showed that early prefibrillar oligomers of TTR induced apoptosis when neuroblastoma cells were exposed to these species whereas mature fibrils were not cytotoxic. We also found increased expression of the molecular chaperone BiP in cells challenged with TTR oligomers. Point mutations destabilize TTR and result in monomers that are unstable and prone to aggregate. TTR D18G is naturally occurring and the most destabilized TTR mutant found to date. It leads to central nervous system (CNS) amyloidosis. The CNS phenotype is rare for TTR amyloid disease. Most proteins associated with amyloid disease are secreted proteins and secreted proteins must pass the quality control check within the endoplasmic reticulum (ER). BiP is a Hsp70 molecular chaperone situated in the ER. BiP is one of the most important components of the quality control system in the cell. We have used TTR D18G as a model for understanding how an extremely aggregation prone protein is handled by BiP. We have shown that BiP can selectively capture TTR D18G during co-expression in both E. coli and during over expression in human 293T cells and collects the mutant in oligomeric states. We have also shown that degradation of TTR D18G in human 293T cells occurs slower in presence of BiP, that BiP is present in amyloid deposition in human brain and mitigates cytotoxicity of TTR D18G oligomers. / Denna avhandling handlar om proteiner. Särskilt de som inte fungerar som de ska utan har blivit vad man kallar ”felveckade”. Anledningen till att proteiner veckas fel beror ofta (men inte alltid) på mutationer i arvsmassan. Felveckade proteiner kan leda till sjukdomar hos människor och djur (man brukar tala om amyloidsjukdomar), ofta av neurologisk karaktär. Exempel på amyloidsjukdomar är polyneuropati, där perifera nervsystemet är drabbat, vilket leder till begränsad rörelseförmåga och senare till förlamning; och Alzheimer´s sjukdom, där centrala nervsystemet är drabbat och leder till begränsad tankeförmåga och minnesförluster. Studierna som presenteras i denna avhandling har gått ut på att få en bättre förståelse för hur felveckade proteiner interagerar med det som vi har naturligt i cellerna och som fungerar som skyddande, hjälpande proteiner, så kallade chaperoner. Transtyretin (TTR) är ett protein som cirkulerar i blodet och transporterar tyroxin (som är ett hormon som bland annat har betydelse för ämnesomsättningen) samt retinol-bindande protein (vitamin A). I TTR genen har man funnit över 100 punktmutationer, vilka har kopplats samman med amyloidsjukdomar, bland annat ”Skellefteåsjukan”. Mutationer i TTR genen leder ofta till att proteinet blir instabilt vilket leder till upplösning av TTR tetrameren till monomerer. Dessa monomerer kan därefter sammanfogas på nytt men denna gång på ett sätt som är farligt för organismen. I denna avhandling har fokus legat på en mutation som kallas TTR D18G, vilken har identifierats i olika delar av världen och leder till en dödlig form av amyloidos i centrala nervsystemet. Det chaperon som vi har studerat benämns BiP och är beläget i en cellkomponent som kallas för det endoplasmatiska retiklet (ER). I ER finns cellens kontrollsystem i vilket det ses till att felveckade proteiner inte släpps ut utan istället bryts ned. Denna avhandling har visat att BiP kan fånga upp TTR D18G inuti celler och där samla mutanten i lösliga partiklar som i detta fall är ofarliga för cellen. Avhandligen har också visat att nedbrytningen av TTR D18G sker mycket långsammare när BiP finns i riklig mängd.
194

Lipoprotein lipase-unstable on purpose?

Zhang, Liyan January 2007 (has links)
Lipoprotein lipase (LPL) is a central enzyme in lipid metabolism. It is a non-covalent, homodimeric and N-glycosylated protein, which is regulated in a tissue-specific manner and is dependent on an activator protein, apolipoprotein CII. Dissociation of active LPL dimers to monomers leads to loss of activity. This was previously found to be an important event in the rapid regulation of LPL in tissues. The mechanisms involved in the processing of LPL to active dimers, as well as in LPL inactivation through monomerization, were unknown. We have investigated the folding properties of the LPL protein, in particular the requirements for LPL to attain its active quaternary structure and to remain in the native conformation. On expression of LPL in insect cells we found that most of the LPL protein was synthesized in an inactive monomeric form. By co-expression of LPL with human molecular haperones, especially with calreticulin (CRT), the activity of LPL increased greatly, both in the cells and in the media. The effect of CRT on LPL activity was not due to increased levels of the LPL protein, but was due to an increased proportion of active dimeric LPL. Co-immunoprecipitation experiments showed direct interaction between LPL and CRT supporting the idea that this ER-based molecular chaperone supports the formation of active LPL dimers. We showed that, bis-ANS, the aromatic hydrophobic probe 1,1.-bis(aniline)-4,4.- bis(naphthalene)-8,8.disulfonate, can be used to obtain specific information about the interaction of LPL with lipid substrates and with apoCII. Bis-Ans was found to be a potent inhibitor of LPL activity, but apoCII prevented the inhibition. Our results suggest that bis-Ans binds to three exposed hydrophobic sites, of which one is at or close to the binding site(s) for apoCII. In studies of the mechanisms responsible for the spontaneous inactivation of LPL, we showed that active LPL is a dynamic dimer in which the subunits rapidly exchange partners. The rapid equilibrium between dimers and monomers exists even under conditions where LPL is relatively stable. This supports the idea that the dimer is in equilibrium with dimerization-competent, possibly active monomers. This dimerization-competent intermediate was also implicated in studies of the inactivation kinetics. The inactive LPL monomer was found to have a stable, defined conformation irrespective of how it was formed. The main differences in conformation between the inactive monomer and the active dimer were located in the middle part of the LPL subunit. Experiments with bis-Ans demonstrated that more hydrophobic regions were exposed in the inactive monomer, indicating a molten globule conformation. We concluded that the middle part of the LPL subunit is most likely engaged in the formation of the active LPL dimer. The dimerization-competent LPL monomer is a hypothetical conformational state, because it has not been possible to isolate it. To study complete refolding of LPL we used fully denatured LPL and were able to demonstrate that the recovery of LPL activity was about 40% when the denaturant was diluted by a buffer containing 20% human serum and 2M NaCl. Further studies identified calcium as the component in serum that was crucial for the reactivation of LPL. The refolding of LPL was shown to involve at least two steps, of which the first one was rapid and resulted in folded, but inactive monomers. The second step, from inactive monomers to active dimers, was slow and calcium-dependent. Also inactive monomers isolated from human tissue were able to recover activity under the influence of calcium. We proposed that calcium-dependent control of LPL dimerization might be involved in the normal post-translational regulation of LPL activity. In conclusion, LPL is a relatively unstable enzyme under physiological conditions due to its noncovalent dimeric structure. The energy barrier for folding to the active dimer is high and requires the presence of calcium ions and molecular chaperones to be overcome. The dimeric arrangement is probably essential to accomplish rapid down-regulation of LPL activity according to metabolic demand, e.g. in adipose tissue on fasting.
195

Protein Misfolding in Human Diseases

Almstedt, Karin January 2009 (has links)
There are several diseases well known that are due to aberrant protein folding. These types of diseases can be divided into three main categories: Loss-of-function diseases Gain-of-toxic-function diseases Infectious misfolding diseases   Most loss-of-function diseases are caused by aberrant folding of important proteins. These proteins often misfold due to inherited mutations. The rare disease marble brain disease (MBD) also known as carbonic anhydrase II deficiency syndrome (CADS) can manifest in carriers of point mutations in the human carbonic anhydrase II (HCA II) gene. We have over the past 10-15 years studied the folding, misfolding and aggregation of the enzyme human carbonic anhydrase II. In summary our HCA II folding studies have shown that the protein folds via an intermediate of molten-globule type, which lacks enzyme activity and the molten globule state of HCA II is prone to aggregation. One mutation associated with MBD entails the His107Tyr (H107Y) substitution. We have demonstrated that the H107Y mutation is a remarkably destabilizing mutation influencing the folding behavior of HCA II. A mutational survey of position H107 and a neighboring conserved position E117 has been performed entailing the mutants H107A, H107F, H107N, E117A and the double mutants H107A/E117A and H107N/E117A. All mutants were severely destabilized versus GuHCl and heat denaturation. Thermal denaturation and GuHCl phase diagram and ANS analyses showed that the mutants shifted HCA II towards populating ensembles of intermediates of molten globule type under physiological conditions. The enormously destabilizing effects of the H107Y mutation is not due to loss of specific interactions of H107 with residue E117, instead it is caused by long range sterical destabilizing effects of the bulky tyrosine residue. We also showed that the folding equilibrium can be shifted towards the native state by binding of the small-molecule drug acetazolamide, and we present a small molecule inhibitor assessment with select sulfonamide inhibitors of varying potency to investigate the effectiveness of these molecules to inhibit the misfolding of HCA II H107Y. We also demonstrate that high concentration of the activator compound L-His increases the enzyme activity of the mutant but without stabilizing the folded protein.   The infectious misfolding diseases is the smallest group of misfolding diseases. The only protein known to have the ability to be infectious is the prion protein. The human prion diseases Kuru, Gerstmann-Sträussler-Scheinker disease (GSS) and variant Creutzfeldt-Jakob are characterized by depositions of amyloid plaque from misfolded prion protein (HuPrP) in various regions of the brain depending on disease. Amyloidogenesis of HuPrP is hence strongly correlated with prion disease. Our results show that amyloid formation of recHuPrP90-231 can be achieved starting from the native protein under gentle conditions without addition of denaturant or altered pH. The process is efficiently catalyzed by addition of preformed recHuPrP90-231 amyloid seeds. It is plausible that amyloid seeding reflect the mechanism of transmissibility of prion diseases. Elucidating the mechanism of PrP amyloidogenesis is therefore of interest for strategic prevention of prion infection.
196

Regulation of Glutamine Synthetase in the Diazotroph Rhodospirillum rubrum

Jonsson, Anders January 2007 (has links)
The bacterial cell needs ammonia for synthesis of glutamine from glutamate. Only one enzyme is able to catalyze this reaction, namely glutamine synthetase (GS). GS can be regulated both transcriptionally and post-translationally and it is present in all kingdoms of life. Our study has been focused on the post-translational regulation of GS in the diazotrophic bacterium Rhodospirillum rubrum. A number of proteins are involved in the covalent regulation of GS, among them are the regulatory PII proteins that depending on growth conditions also like GS are covalently modified. We have purified all proteins involved in GS regulation and developed several in vitro assays with the aim of understanding GS regulation in R. rubrum. Studies on the influence of the small metabolite effectors α-ketoglutarate and glutamine are also included together with the effect of divalent cations. In both R. rubrum and Escherichia coli, one of the enzymes participating in GS regulation is the bifunctional enzyme GlnE. GlnE is responsible for both the attachment and the removal of AMP groups from GS, which basically leads to a more inactive or active enzyme respectively. Apart from examining the above functions of GlnE, we have also found a novel third activity of R. rubrum GlnE, an antioxidant function, which is located in the C-terminal domain. We have examined this novel activity of GlnE in great detail, including site specific mutagenesis. We also generated and analyzed ΔglnE mutants in R. rubrum and the results from these studies show that suppressor mutations can occur within glnA, the gene encoding GS. We assume that the function of these suppressor mutations is to lower the specific activity of GS, which otherwise might be too high in a ΔglnE mutant since they lack the ability to adenylylate GS. In other words, it seems that ΔglnE mutants can not be generated without producing suppressor mutations.
197

Structural Studies of Microbial Proteins - From Escherichia coli and Herpesviruses

Gurmu, Daniel January 2010 (has links)
Structure biology concerns the study of the molecular structures of biological macromolecules, such as proteins, and how these relate to the function. Protein structures are also of importance in structure-based drug design. In this thesis, the work has been carried out in two different projects. The first project concerns structural studies of proteins from the bacterium Escherichia coli and the second of proteins from five different herpesviruses.  The E. coli project resulted in the structural characterization of three proteins: CaiB, RibD, and YhaK. CaiB is a type-III CoA transferase involved in the metabolism of carnitine. Its molecular structure revealed a spectacular fold where two monomers were interlaced forming an interlocked dimer. RibD, a bi-functional enzyme, catalyzes two consecutive reactions during riboflavin biosynthesis. In an attempt to characterize the mechanism of action of the N-terminal reductase domain, the structure of RibD was also determined in two binary complexes with the oxidized cofactor, NADP+, and with the substrate analogue ribose-5-phosphate. YhaK is a protein of unknown function normally found in low abundance in the cytosol of E. coli and was previously annotated to be a member of the Pirin family. However, some structural features seem to distinguish YhaK from these other Pirin proteins and we showed that YhaK might be regulated by reactive oxygen species.  The Herpesvirus project resulted in the structural determination of two proteins, the SOX protein and ORF60 from Kaposi’s sarcoma associated herpesvirus (KSHV). SOX, a bi-functional shutoff and exonuclease protein, is involved in the maturation and packaging of the viral genome into the viral capsid and in the host shutoff of cellular proteins at the mRNA level. The SOX structure was also used for modeling DNA binding. The crystallization and preliminary structural studies of ORF60, the small R2 subunit of the ribonucleotide reductase (RNR) from KSHV is also discussed. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 5: Manuscript.
198

Application of Artificial Gel Antibodies for the Detection and Quantification of Proteins in Biological Fluids

Ghasemzadeh, Nasim January 2010 (has links)
The molecular-imprinting method has previously been used for the synthesis of artificial gel antibodies, highly selective for various proteins. In present study, we have synthesized artificial gel antibodies against haemoglobin, albumin and different forms of growth hormone with the aim to develop a simple and rapid procedure to measure the concentration of these protein biomarkers in samples of clinical interest.  A spectrophotometric method was developed to design a standard curve in the form of a straight line, whereby the true absorption (not the recorded “apparent” absorption) was plotted against a known protein concentration. The procedure, applied to quantitative analysis of albumin in human plasma and cerebrospinal fluid (CSF) from patients with ALS, indicated that  the concentration of this protein was significantly enhanced in CSF from patients with amyotrophic lateral sclerosis (ALS), compared to control samples. A low level of albumin was observed in plasma from ALS patients compared to controls. Additionally, free zone electrophoresis was employed to detect human growth hormone (GH) activity in hormone preparations purified from human pituitaries. We have successfully synthesized antibodies capable of discriminating between dimeric and monomeric GH in samples of clinical origin. To quantify these proteins a calibration curve has been designed, i.e. a plot of the electrophoretic mobility of the complex GH/gel antibody against the protein concentration in the sample, for instance serum or CSF. This method was also employed for qualitative and quantitative determinations of Somatropin, a non-glycosylated GH and glycosylated-GH in a body liquid. Our results indicate that by this technique one can “fish out” with high accuracy various proteins from both body fluids containing a great number of other proteins. It might well apply also to biomarker proteins for other diseases.
199

Homotrimeric dUTPases : Principles of Catalysis and Inhibitor Design

Gonzalez Palmén, Lorena January 2009 (has links)
The ubiquitous enzyme dUTPase hydrolyzes dUTP into dUMP and pyrophosphate, preventing DNA fragmentation and cell death due to accumulation of dUTP. Inhibitors of dUTPase could serve as drugs in the treatment of cancers and infectious diseases. This thesis presents five studies. A mutational study on the Escherichia coli dUTPase (S72A) provides new insights about the catalytic principles of the homotrimeric dUTPases. A model is presented in which transition state formation is associated with a rotation of the conserved Ser72 side chain. The model can explain the strict order of deamination and hydrolysis catalyzed by the bifunctional dCTP deaminase:dUTPases. The S72A/D90N double mutant is currently investigated. Preliminary data indicate that this form preserves the binding properties of the S72A mutant but is completely inactive, making it attractive for structural studies. In the remaining studies we compare the binding of substrate analogues to the human, the E. coli and the equine infectious anemia virus (EIAV) homotrimeric dUTPases. One study concerns 2´,3´-dideoxy-UTP (ddUTP) and shows that removal of the 3´-hydroxyl group increases KM, ten times with the cellular dUTPases and fifty times with the viral dUTPase, but does not affect kcat with any of these enzymes. Another study concerns the inhibitory effects of 3´-azido-2´,3´-dideoxy-UTP. This derivative binds to the bacterial dUTPase but not to the other forms making it a potential lead for the development of antibacterial dUTPase inhibitors. Yet another study investigates two uracil derivatives. Both compounds are found to inhibit the human, the bacterial but not the viral dUTPase. The inhibition is shown to be competitive.
200

Post-synaptic Density Disc Large Zo-1 (PDZ) Domains : From Folding and Binding to Drug Targeting

Chi, Celestine January 2010 (has links)
Understanding how proteins fold and bind is interesting since these processes are central to most biological activity. Protein folding and protein-protein interaction are by themselves very complex but using a good and robust system to study them could ease some of the hurdles. In this thesis I have tried to answer some of the fundamental questions of protein folding and binding. I chose to work with PDZ domains, which are protein domains consisting of 90-100 amino acids. They are found in more than 400 human proteins and function mostly as protein-protein interaction units. These proteins are very stable, easy to express and purify and their folding reaction is reversible under most laboratory conditions. I have characterized the interaction of PSD-95 PDZ3 domain with its putative ligand under different experimental conditions and found out that its binding kinetics is sensitive to salt and pH.  I also demonstrated that the two conserved residues R318 and H372 in PDZ3 are responsible for the salt and pH effect, respectively, on the binding reaction. Moreover, I determined that for PSD 95 PDZ3 coupling of distal residues to peptide binding was better described by a distance relationship and there was a very weak evidence of an allosteric network. Further, I showed that another PDZ domain, SAP97 PDZ2 undergoes conformational change upon ligand binding. Also, I characterized the binding mechanism of a dimeirc ligand/PDZ1-2 tandem interaction and showed that despite its apparent complexity the binding reaction is best described by a square scheme. Additionally, I determined that for the SAP 97 PDZ/HPV E6 interaction that all three PDZ domains each bind one molecule of the E6 protein and that a set of residues in the PDZ2 of SAP 97 could operate in an unexpected long-range manner during E6 interaction. Finally, I showed that perhaps all members in the PDZ family could fold via a three state folding mechanism. I characterized the folding mechanism of five different PDZ domains having similar overall fold but different primary structure and the results indicate that all five fold via an intermediate with two transition states. Transition state one is rate limiting at low denaturant concentration and vice versa for transition state two. Comparing and characterizing the structures of the transition states of two PDZ domains using phi value analysis indicated that their early transition states are less similar as compared to their late transition states.

Page generated in 0.0312 seconds