Spelling suggestions: "subject:"biolological transport"" "subject:"bybiological transport""
211 |
Studies on the internalization and intracellular transport of horseradish peroxidase in Chinese hamster ovary cellsSullivan, Peter C. January 1985 (has links)
Soluble horseradish peroxidase (HRP) is internalized by Chinese hamster ovary cells, a cell line of fibroblastic origin (Adams et al., 1982). We have confirmed this result by showing no inhibition of uptake in the presence of divalent cation chelators (EGTA Mg or EDTA), excess (19 mg/ml) yeast mannan (an inhibitor of uptake through a mannose/N-acetylglucosamine receptor) or using periodate treated HRP. Periodate treatment destroys the ring structure of sugars on HRP which have hydroxyl groups on adjacent ring carbons, eliminating sugar mediated uptake of HRP. Once internalized, HRP is found in endocytic vesicles which by HRP-cytochemical staining, show deposits which rim the luminal face of vesicle membrane. Once HRP is in lysosomes, cytochemical deposits are luminal. To test if HRP is actually associated with vesicle membrane, a hypotonic lysis assay was used. Postnuclear supernatants (PNS) from cells pulse labeled with HRP were lysed and the percent of HRP sedimenting with a high speed membrane fraction was used as a measure of membrane association. After a pulse, >60% of the total HRP internalized was pelletable. Hypotonic lysis of a PNS at different pH and temperature showed no significant difference in "pelletability" from 4℃ to 37℃ at neutral pH and only a slight decrease in "pelletability" with increased temperature (4℃ to 37℃) at pH M.6. Binding of HRP in a membrane preparation was pH and temperature stable. Uptake of native HRP in the presence of yeast mannan (19 mg/ml) or using periodate treated HRP also had little effect on "pelletability", suggesting the absence of sugar specific binding in endocytic vesicles. Using the hypotonic lysis assay of a PNS after different chase times, HRP dissociation from membrane was observed over a 30 minute chase period. Internalized HRP in the presence of yeast mannan (19 mg/ml), intravesicular pH elevators HEPES (40 mM) or monensin (10 μM), or substances which should deplete cellular ATP NaF/KCN (2 mM /1 mM), showed no inhibition of dissociation kinetics. A chase at 17℃ inhibited dissociation of HRP over the entire 30 minute period. This HRP binding site(s) appears unique to endocytic vesicles.
A minimum of four steps in transport have been identified based on their sensitivity to inhibitors. HRP transport, identified by Percoll density gradient fractionation, was inhibited at 17°C and was sensitive to pH elevators (NH₄Cl, monensin, HEPES) and ATP depletion (NaF/KCN). Inhibition of transport appeared to be independent of HRP dissociation except at early temperature sensitive step(s). These results suggest that transport inhibition may be due to an effect on a) inhibition of membrane dissociation (early step(s)) and alteration of membrane fluidity (later steps) by reduced temperature and b) transmembrane events by pH elevators and ATP depletion. / Ph. D. / incomplete_metadata
|
212 |
Maltotriose transport in yeastSmit, Annel 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: The conversion of sugar into ethanol and carbon dioxide is a process that has been
intertwined with human culture and long as civilized man has existed. This fermentation
process has been dominated by the micro-organism Saccharomyces cerevisiae and from
providing ancient seafaring explorers of a non perishable beverage to equipping bakers
with a raising agent to turn flour into bread; this organism with its fermentative potential,
has formed an essential part of most societies.
In more recent times, many industries still rely on this basic principle. The
complexities and efficiencies of the conversion of sugar into its various fermentative byproducts
have been studied and optimised extensively to meet the specific demands of
industries. Depending on the raw material used as starting point, the major beneficiaries of
the useful characteristics have been alcoholic beverage producers (wine, beer, and
whiskey amongst others), bakers (bread leavening) and biofuel producers.
One of the obstacles in fermentation optimisation is the sugar consumption
preferences displayed by the organism used. S. cerevisiae can consume a wide variety of
sugars. Depending on the complexities of its structures, it shows a preference for the
simpler saccharides. The fermentation of certain more complex sugars is delayed and runs
the risk of being left residually after fermentation. Many of the crops utilised in
fermentation-based products contain large amounts of starch. During the starch
degradation process many different forms of sugars are made available for fermentation.
Improved fermentation of starch and its dextrin products would benefit the brewing,
whiskey, and biofuel industries. Most strains of Saccharomyces ferment glucose and
maltose, and partially ferment maltotriose, but are unable to utilise the larger dextrin
products of starch. This utilisation pattern is partly attributed to the ability of yeast cells to
transport the aforementioned mono-, di- and trisaccharides into the cytosol. The
inefficiency of maltotriose transport has been identified as the main cause for residual
maltotriose. The maltotriose transporting efficiency also varies between different
Saccharomyces strains.
By advancing the understanding of maltotriose transport in yeast, efforts can be
made to minimise incomplete fermentation. This aim can be reached by investigating the
existing transporters in the yeast cell membrane that show affinity for maltotriose. This
study focuses on optimising maltotriose transport through the comparison of the alpha
glucoside transporter obtained from different strains of Saccharomyces. Through specific
genetic manipulations the areas important for maltotriose transport could be identified and
characterised.
This study offers prospects for the development of yeast strains with improved maltose
and maltotriose uptake capabilities that, in turn, could increase the overall fermentation
efficiencies in the beer, whiskey, and biofuel industries. / AFRIKAANSE OPSOMMING: Die transformasie van suiker na etanol en koolstof dioksied is so oud soos die beskawing self, en dit is van die vroegste tye af onlosmaaklik met die mens se kultuur verbind. Hierdie fermentasie-proses word gedomineer deur die Saccharomyces cerevisiae mikroorganisme. Hierdie organisme het antieke seevaarders voorsien van ‘n nie-bederfbare drankie en van ouds af aan bakkers ‘n rysmiddel verskaf waarmee meel in brood verander kon word. As gevolg van hierdie fermenteringspotensiaal het hierdie organisme ‘n onmisbare rol in meeste beskawings gespeel. Baie industrieë is steeds op hierdie basiese beginsel gebou. Die kompleksiteite en effektiwiteit van die transformasie van suiker na sy verskeie gefermeenteerde neweprodukte is breedvoerig bestudeer en geoptimiseer om aan die spesifieke behoeftes van verskeie industrieë te voeldoen. Afhangend van die grondstowwe wat as beginpunt gebruik is, is die primêre begunstigdes van die fermentasie proses die alkoholiese drankprodusente (onder andere die wyn-, bier- en whiskey produsente), bakkers en biobrandstofprodusente. Die suikerverbruik-voorkeur van die organisme wat die fermentering fasiliteer is een van die struikelblokke in die optimisering van die proses. S. cerevisiae kan ‘n wye spektrum van suikers verbruik maar dit toon ‘n voorkeur vir die eenvoudiger suikers. Die fermentasie van sekere van die meer komplekse suikers is vertraag en loop die risiko om agtergelaat te word na fermentasie. Vele van die gewasse wat in die gefermenteerde produkte gebruik word bevat groot hoeveelhede stysel. Vele soorte suikers word gedurende die afbreek van die stysel beskikbaar gestel vir fermentasie. Die brouers-, whiskey- en biobrandstof industrieë sal almal voordeel trek uit die verbeterde fermentasie van stysel en sy gepaardgaande dekstrin produkte. Meeste Saccharomyces gisrasse fermenteer glucose en maltose; maltotriose word gedeeltelik gefermenteer, maar die meer komplekse dekstrien produkte gevind in stysel word nie gefermenteer nie. Hierdie verbruikerspatroon kan gedeeltelik toegeskryf word aan die vermoë van gisselle om die bogenoemde mono-, di- and trisaccharides in die sitosol op te neem. Die oneffektiwiteit van maltotriose transport is identifiseer as die hoofoorsaak van post-fermentatiewe, oortollige maltotriose. Die effektiwiteit van maltotriose transport verskil ook tussen verskillende Saccharomyces rasse. Pogings om onvolledige fermentasie te veminder kan bevorder word deur die kennis rondom maltotriose transport in gis uit te bou. Hierdie oogmerk kan bereik word deur die bestaande transporters in die gissel se membraan wat ‘n affiniteit vir maltotriose toon te ondersoek. Hierdie studie fokus op die optimisering van maltotriose transport deur die vergelyking van die alpha glucoside transporter (AGT1) wat van verskillende Saccharomyces rasse afkomstig is. Die areas wat relevant is tot maltotriose transport kon deur spesifieke genetiese manipulasies identifiseer en gekarakteriseer word. Hierdie studie bevorder die vooruitsig op die ontwikkeling van gisrasse met verbeterde
maltose en maltotriose transport vermoëns wat op sy beurt weer kan aanleiding gee tot die
verbeterde fermentasie effektiwiteit in die bier, whiskey en biobrandstof industrieë.
|
213 |
Functional analysis of arabidopsis and rice vacuolar sorting receptor (VSR) proteins. / CUHK electronic theses & dissertations collectionJanuary 2010 (has links)
Vacuolar sorting receptors (VSRs) are type I integral membrane family proteins that mediate protein transport from late Golgi or trans-Golgi network (TGN) to vacuole via prevacuolar compartment (PVC) in plant cells. The N-terminus of a VSR is believed to be important for cargo binding while its transmembrane domain (TMD) and cytoplasmic tail (CT) are essential for its correct subcellular localization. In this study, I first developed and tested an expression system using transgenic tobacco BY-2 cells to produce truncated VSR proteins (VSRNT) lacking the TMD/CT into the cultured media. The secreted VSRs bind specifically to the vacuolar sorting determinants (VSDs) of known vacuolar proteins and such binding is calcium dependent in vitro. Thus, VSR cargo proteins are likely secreted into the cultured media along with the truncated VSRs, which enable the identification of various VSR cargo proteins from the cultured media of transgenic cells. I then identified these putative VSR cargo proteins through liquid-chromatography with tandem mass spectrometry (LC-MS/MS) and Fourier transform mass spectrometry (FT-MS) using transgenic Arabidopsis cell suspension cultures PSB-D expressing these truncated VSRs. Among the 17 unique proteins found in the cultured media of transgenic Arabidopsis PSB-D cell line expressing VSRNT, an Arabidopsis glycosyl hydrolase family 3 protein At5g10560 (GH3) was chosen for further study on VSR-cargo protein interaction. GFP-tagged GH3 fusion protein was found to co-localize with VSR-RFP marker protein in PVC, whereas GH3 was also shown to interact with a VSR protein BP-80. Loss-of-function analysis demonstrated that the GH3 contained a vacuolar sorting determinant (VSD) for PVC targeting. / Suen, Pui Kit. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 77-84). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
|
214 |
Regulated L-Arginine transport in heart failureAhlers, Belinda A. January 2003 (has links)
Abstract not available
|
215 |
Creatine uptake and creatine transporter expression among rat skeletal muscle fiber typesBrault, Jeffrey J. January 2003 (has links)
Thesis (Ph. D.)--University of Missouri--Columbia, 2003. / Typescript. Vita. Includes bibliographical references (leaves 102-113).
|
216 |
Role of membrane-type 1 matrix metalloproteinase in hematopoietic stem/progenitor cell traffickingShirvaikar, Neeta Chandan. January 2010 (has links)
Thesis (Ph.D.)--University of Alberta, 2010. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Medicine. Title from pdf file main screen (viewed on April 27, 2010). Includes bibliographical references.
|
217 |
Adaptive finite element simulation of flow and transport applications on parallel computersKirk, Benjamin Shelton, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
218 |
Human Erythrocyte Glucose Transporter (GLUT1) Structure, Function, and Regulation: A DissertationBlodgett, David M. 13 March 2007 (has links)
The structure-function relationship explains how the human erythrocyte glucose transport protein (GLUT1) catalyzes sugar transport across the plasma membrane. This work investigates the glucose transport mechanism, the structural arrangement and dynamics of GLUT1 membrane-spanning α-helices, the molecular basis for glucose transport regulation by ATP, and how cysteine accessibility contributes to GLUT1 structure.
A rapid kinetics approach was applied to examine the conformational changes GLUT1 undergoes during the transport cycle. To transition from a global to molecular focus, a novel mass spectrometry technique was developed to resolve GLUT1 sequence that is associated either with membrane embedded GLUT1 subdomains or with water exposed domains. By studying accessibility changes of specific amino acids to covalent modification by a Sulfo-NHS-LC-Biotin probe, specific protein regions associated with glucose transport modulation by ATP were identified. Finally, mass spectrometry was applied to examine cysteine residue accessibility under native and reducing conditions.
This thesis presents data supporting the isolation of an intermediate, occluded GLUT1 conformational state that temporally bridges import and export configurations during glucose translocation. Our results confirm that amphipathic α-helices line the translocation pathway and promote interactions with the aqueous environment and substrate. In addition, we show that GLUT1 is conformationally dynamic, undergoes reorganization in the cytoplasmic region in response to ATP modulation, and that GLUT1 contains differentially exposed cysteine residues that affect its folding.
|
219 |
Metabolic Regulation of Glucose Transport is an Insulin-Dependent Mechanism: A DissertationDiamond, Deborah L. 01 May 1993 (has links)
Protein-mediated sugar transport is nominally absent in normoxic (adequately oxygenated) pigeon erythrocytes. Following exposure to metabolic inhibitors (cyanide or carbonylcyanide-p-trifluoromethoxyphenylhydrazone), pigeon red cells transport sugars by a saturable, stereoselective pathway that is inhibited by cytochalasin B or forskolin. The sugar transport capacity of fully poisoned cells is consistent with a transporter density of approximately 30 carriers per erythrocyte. Immunoblot analyses and competition ELISA indicate that pigeon red cells contain approximately 200 copies of an integral plasma membrane protein immunologically related to the glucose transporter isoform GLUT1. GLUT1 is quantitatively restricted to the plasma membrane at all times. Pigeon red cells and brain lack proteins immunologically related to the sugar transporter isoforms GLUT3 and GLUT4. Specific immunodepletion of red cell GLUT1 content results in the subsequent loss of reconstitutable protein-mediated sugar transport. These findings demonstrate that avian erythrocyte sugar transport is mediated by a GLUT1-like sugar transport protein and that sugar transport stimulation by metabolic inhibitors results from derepression of cell surface sugar transport proteins. Lysis-resealing experiments suggest that derepression is a glutathione (OSH) dependent phenomenon. This mechanism of transport regulation contrasts with insulin stimulation of sugar transport in muscle and adipose tissue which is believed to result from recruitment of intracellular sugar transporters to the plasma membrane.
|
220 |
Upstream open reading frames differentially regulate genespecific translation in the integrated stress responseYoung, Sara Kathryn 13 May 2016 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Gene expression is a highly coordinated process that relies upon appropriate
regulation of translation for protein homeostasis. Regulation of protein synthesis largely
occurs at the initiation step in which the translational start site is selected by ribosomes
and associated initiating factors. In addition to the coding sequences (CDS) for protein
products, short upstream open reading frames (uORFs) located in the 5’-leader of
mRNAs are selected for translation initiation. While uORFs are largely considered to be
inhibitory to translation at the downstream CDS, uORFs can also promote initiation of
CDS translation in response to environmental stresses. Multiple transcripts associated
with stress adaptation are preferentially translated through uORF-mediated mechanisms
during activation of the Integrated Stress Response (ISR). In the ISR, phosphorylation
of α subunit of the translation initiation factor eIF2α (eIF2α~P) during environmental
stresses results in a global reduction in protein synthesis that functions to conserve
energy and nutrient resources and facilitate reprogramming of gene expression.
Many key regulators of the ISR network are subject to preferential translation in
the response to eIF2α-P. These preferentially translated genes include the pro-apoptotic
transcriptional activator Chop that modifies gene expression programs, feedback
regulator Gadd34 that targets the catalytic subunit of protein phosphatase 1 to
dephosphorylate eIF2α~P, and glutamyl-prolyl tRNA synthetase Eprs that increases the
charged tRNA pool and primes the cell for resumption of protein synthesis after stress
remediation. Ribosome bypass of at least one inhibitory uORF is a common theme
between Chop, Gadd34, and Eprs, which allows for their regulated expression in
response to cellular stress. However, different features encoded within the uORFs of the Chop, Gadd34, and Eprs mRNAs provide for regulation of their inhibitory functions,
illustrating the complexities of uORF-mediated regulation of gene-specific translation.
Importantly, preferentially translated ISR targets can also be transcriptionally regulated
in response to cellular stress and misregulation of transcriptional or translational
expression of Gadd34 can elicit maladaptive cell responses that contribute to disease.
These mechanisms of translation control are conserved throughout species,
emphasizing the importance of translation control in appropriate gene expression and
the maintenance of protein homeostasis and health in diverse cellular conditions.
|
Page generated in 0.1197 seconds