Spelling suggestions: "subject:"biological transport"" "subject:"biolological transport""
241 |
Effects of carbon nanotubes on airway epithelial cells and model lipid bilayers : proteomic and biophysical studiesLi, Pin January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Carbon nanomaterials are widely produced and used in industry, medicine and scientific research. To examine the impact of exposure to nanoparticles on human health, the human airway epithelial cell line, Calu-3, was used to evaluate changes in the cellular proteome that could account for alterations in cellular function of airway epithelia after 24 h exposure to 10 μg/mL and 100 ng/mL of two common carbon nanoparticles, singleand multi-wall carbon nanotubes (SWCNT, MWCNT). After exposure to the nanoparticles, label-free quantitative mass spectrometry (LFQMS) was used to study differential protein expression. Ingenuity Pathway Analysis (IPA) was used to conduct a bioinformatics analysis of proteins identified by LFQMS. Interestingly, after exposure to a high concentration (10 μg/mL; 0.4 μg/cm2) of MWCNT or SWCNT, only 8 and 13 proteins, respectively, exhibited changes in abundance. In contrast, the abundance of hundreds of proteins was altered in response to a low concentration (100 ng/mL; 4
ng/cm2) of either CNT. Of the 281 and 282 proteins that were significantly altered in response to MWCNT or SWCNT, respectively, 231 proteins were the same.
Bioinformatic analyses found that the proteins common to both kinds of nanotubes are associated with the cellular functions of cell death and survival, cell-to-cell signaling and interaction, cellular assembly and organization, cellular growth and proliferation,
infectious disease, molecular transport and protein synthesis. The decrease in expression of the majority proteins suggests a general stress response to protect cells. The STRING database was used to analyze the various functional protein networks. Interestingly, some
proteins like cadherin 1 (CDH1), signal transducer and activator of transcription 1 (STAT1), junction plakoglobin (JUP), and apoptosis-associated speck-like protein
containing a CARD (PYCARD), appear in several functional categories and tend to be in the center of the networks. This central positioning suggests they may play important roles in multiple cellular functions and activities that are altered in response to carbon
nanotube exposure. To examine the effect of nanotubes on the plasma membrane, we investigated the
interaction of short purified MWCNT with model lipid membranes using a planar bilayer workstation. Bilayer lipid membranes were synthesized using neutral 1, 2-diphytanoylsn-glycero-3-phosphocholine (DPhPC) in 1 M KCl. The ion channel model protein, Gramicidin A (gA), was incorporated into the bilayers and used to measure the effect of MWCNT on ion transport. The opening and closing of ion channels, amplitude of current, and open probability and lifetime of ion channels were measured and analyzed by Clampfit. The presence of an intermediate concentration of MWCNT (2 μg/ml) could be related to a statistically significant decrease of the open probability and lifetime of gA channels.
The proteomic studies revealed changes in response to CNT exposure. An analysis of the changes using multiple databases revealed alterations in pathways, which were
consistent with the physiological changes that were observed in cultured cells exposed to very low concentrations of CNT. The physiological changes included the break down of the barrier function and the inhibition of the mucocillary clearance, both of which could increase the risk of CNT’s toxicity to human health. The biophysical studies indicate MWCNTs have an effect on single channel kinetics of Gramicidin A model cation channel. These changes are consistent with the inhibitory effect of nanoparticles on hormone stimulated transepithelial ion flux, but additional experiments will be necessary to substantiate this correlation.
|
242 |
Characterization of Hepatitis C Virus Infection of Hepatocytes and AstrocytesLiu, Ziqing January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Approximately 2.8% of the world population is currently infected with hepatitis C virus (HCV). Neutralizing antibodies (nAbs) are often generated in chronic hepatitis C patients yet fail to control the infection. In the first two chapters of this study, we focused on two alternative routes of HCV transmission, which may contribute to HCV’s immune evasion and establishment of chronic infection. HCV was transmitted via a cell-cell contact-mediated (CCCM) route and in the form of exosomes. Formation of HCV infection foci resulted from CCCM HCV transfer and was cell density-dependent. Moreover, CCCM HCV transfer occurred rapidly, involved all four known HCV receptors and intact actin cytoskeleton, and led to productive HCV infection. Furthermore, live cell imaging revealed the temporal and spatial details of the transfer process. Lastly, HCV from HCV-infected hepatocytes and patient plasma occurred in both exosome-free and exosome-associated forms and the exosome-associated HCV remained infectious, even though HCV infection did not significantly alter exosome secretion.
In the third chapter, we characterized HCV interaction with astrocytes, one of the putative HCV target cells in the brain. HCV infection causes the central nervous system (CNS) abnormalities in more than 50% of chronically infected subjects but the underlying mechanisms are largely unknown. We showed that primary human astrocytes (PHA) were very inefficiently infected by HCV, either in the free virus form or through cell-cell contact. PHA expressed all known HCV receptors but failed to support HCV entry. HCV IRES-mediated translation was functional in PHA and further enhanced by miR122 expression. Nevertheless, PHA did not support HCV replication regardless of miR122 expression. To our great surprise, HCV exposure induced robust IL-18 expression in PHA and exhibited direct neurotoxicity. In summary, we showed that CCCM HCV transfer and exosome-mediated HCV infection constituted important routes for HCV infection and dissemination and that astrocytes did not support productive HCV infection and replication, but HCV interactions with astrocytes and neurons alone might be sufficient to cause CNS dysfunction. These findings provide new insights into HCV infection of hepatocytes and astrocytes and shall aid in the development of new and effective strategies for preventing and treating HCV infection.
|
Page generated in 0.0934 seconds