• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 20
  • 20
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modelo biomecânico tridimensional para análise das forças internas atuantes na coluna cervical superior e inferior durante o ciclismo

Pasini, Maicon January 2009 (has links)
Elevados índices de dor cervical e lombar têm sido reportados em ciclistas. Fatores como a postura adotada na bicicleta, a ativação dos músculos extensores da coluna e a ação de cargas mecânicas nas estruturas da coluna tem sido apontados como possíveis causas da dor. Embora relatados e aparentemente aceitos, poucos estudos objetivaram investigar estes fatores. Em adição, a dor crônica não específica é frequentemente diagnosticada em ciclistas, pois poucas evidências de anormalidade são observadas quando realizados exames radiológicos clínicos. O emprego de métodos biomecânicos de investigação, como a estimativa da magnitude da força muscular dos extensores da coluna e da força articular em diferentes níveis da coluna poderia contribuir para avaliação do risco de lesão e dor em decorrência do ciclismo, além de auxiliar na criação de estratégias de prevenção e programas de reabilitação. Assim, este estudo teve como objetivo quantificar e comparar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas, por meio do desenvolvimento e aplicação de um modelo biomecânico tridimensional in vivo. O modelo biomecânico proposto foi composto por dois segmentos rígidos (coluna cervical superior e inferior) conectados. O segmento coluna cervical superior compreende a cabeça, C1 e C2. O segmento coluna cervical inferior compreende as vértebras cervicais de C3 a C7. No segmento coluna cervical superior são considerados dois vetores de força muscular: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) e FM2 (semispinalis capitis e splenius capitis). Já no segmento coluna cervical inferior estão inclusos os vetores FM3 (semispinalis cervicis) e FM4 (splenius cervicis). A resolução das equações de movimento de Newton-Euler é realizada por meio da solução inversa. Os parâmetros cinemáticos foram obtidos utilizando imagens externas da cabeça e coluna cervical, adquiridas por meio de quatro câmeras de vídeo digital com frequencia de amostragem de 25 Hz. Para estimar a localização dos centros de rotação (C2-3 e C6-7) foram realizados exames radiológicos convencionais estáticos. Os parâmetros de massa e centro de massa foram retirados de tabelas antropométricas da literatura. Participaram do estudo 12 ciclistas com pelo menos dois anos de experiência competitiva cada. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal do Rio Grande do Sul e os sujeitos assinaram um termo de consentimento livre e esclarecido. Cada participante foi avaliado utilizando sua própria bicicleta acoplada a um ciclossimulador magnético, em duas etapas realizadas no mesmo dia. Inicialmente foi mensurada a massa corporal total do individuo e em seguida identificados e marcados 14 pontos anatômicos de interesse com uma caneta dermatográfica. Durante as avaliações foram fixos marcadores revestidos com papel reflexivo e contendo chumbo no interior em todos os pontos anatômicos de interesse. Na Etapa I os sujeitos pedalaram durante 2 minutos em cada postura (ereta, descanso, intermediária, ataque e cotovelos flexionados), sendo coletados dados cinemáticos durante os últimos 30 segundos de cada uma. Na Etapa II foram realizados exames radiológicos estáticos em cada uma das 5 posturas analisadas (ereta, descanso, intermediária, ataque e cotovelos flexionados) e em flexão e extensão máximas da coluna cervical. Os resultados indicam que as forças internas atuantes nas estruturas da coluna cervical apresentaram maiores magnitudes nas posturas que envolvem a prática do ciclismo (descanso, intermediária, ataque e cotovelos flexionados), quando comparadas a postura de referência (ereta). Observando somente as posturas que envolvem o ciclismo, as forças internas aumentaram gradativamente a medida que os ciclistas transferiram o apoio de suas mãos da região superior para a região inferior do guidão, adotando as posturas descanso, intermediária e ataque, respectivamente. Entretanto, as maiores magnitudes das forças internas foram observadas quando os ciclistas efetuaram o apoio das mãos envolvendo os manetes e flexionaram a articulação do cotovelo (postura cotovelos flexionados). Proporcionalmente os maiores aumentos das forças internas ocorreram na coluna cervical superior, porém as maiores magnitudes das forças internas foram alcançadas na coluna cervical inferior. O processo de avaliação demonstrou que o modelo biomecânico tridimensional da coluna cervical proposto foi considerado capaz de representar de maneira confiável o sistema de interesse. Os resultados encontrados são coerentes, sendo o modelo um instrumento adequado para estimar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas. / High index of cervical and lumbar pain had been registered in cyclists. Factors as a posture adopted on bicycle, the activity of spine extensor muscles and the action of mechanical load in the spine structures had been put like possible causes of pain. Although related and apparently accepted, few studies investigate these factors. In addition, the non-specific chronic pain is frequently diagnosed in cyclists, because few evidences of abnormalities are investigated when clinic radiologics exams are done. The use of biomechanical methods of investigation, like the estimate of muscular force magnitude of extensors of spine and of joint force in different levels of spine can be contributed to evaluation of injury risk and pain caused by cycling, beyond the assist in strategies of prevention and rehabilitation programs. Therefore, this study had like objective to quantify and compare the active internal forces in the cervical spine during cycling in different postures, through development and application of three dimensional in vivo biomechanical model. The biomechanical model suggested was compound by two rigid segments (upper and lower cervical spine) connected. The upper cervical spine segment include head, C1 and C2. The lower cervical spine segment include cervical vertebraes of C3 to C7. In the upper cervical spine segment are considered two vectors of muscular force: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) and FM2 (semispinalis capitis e splenius capitis). In the lower cervical spine segment are included the vectors FM3 (semispinalis cervicis) and FM4 (splenius cervicis). The resolution of movement equation of Newton-Euler is done through inverse dynamics. The kinematic parameters were obtained using external images of head and cervical spine, acquired by four digital video cameras with sampling frequency of 25 Hz. To estimate the location of rotation centers (C2-3 and C6-7) statics conventional radiologic exams were done. The parameters of mass and center of mass were removed of anthropometric tables of literature. 12 cyclists with at least two years of competitive experience each one participated of the study. The study was approved by Ethics Committee in Researches of Federal University of Rio Grande do Sul and the subjects signed a free and clear consent term. Each participant was assessed using your bicycle attached in a magnetic cycle simulator, in two stages done in the same day. Initially the total body mass of subjects was measured and then 14 anatomic points of interest were identified and marked with a dermatography pen. During the evaluation markers encased with reflective paper and containing lead inside of these markers were fixed in all anatomic points of interest. In the stage I the subjects rode a bicycle during 2 minutes in each posture (upright neutral, rest, intermediate, attack and flexed elbows). The kinematic data were collected during the last 30 seconds of each one. In the stage II static radiologic exams were done in each of 5 analyzed postures (upright neutral, rest, intermediate, attack and flexed elbows) and in maxim flexion and extension of cervical spine. The results indicate that the internal forces active in the structures of cervical spine presented more magnitudes in the postures that involve the cycling practice (rest, intermediate, attack and flexed elbows), when compared to reference posture (upright neutral). Observing just the postures that involve the cycling, the internal forces gradually increased as cyclists transferred the your hands from upper to lower region of handlebar, adopting the rest, intermediate and attack postures, respectively. However, the greater magnitude of internal forces were observed when the cyclists hands involving the brake levers and flexed the elbow joints (flexed elbows posture). Proportionally the greatest increase of internal forces occurred in the upper cervical spine, however the greatest magnitudes of internal forces were reached in the lower cervical spine. The evaluation process demonstrated that the three dimensional biomechanical model of cervical spine was considered able to represent of reliable way the interest system. The results found are coherent, the model is an adequate instrument to estimate the internal forces active in the cervical spine during cycling in different postures.
12

Modelo biomecânico tridimensional para análise das forças internas atuantes na coluna cervical superior e inferior durante o ciclismo

Pasini, Maicon January 2009 (has links)
Elevados índices de dor cervical e lombar têm sido reportados em ciclistas. Fatores como a postura adotada na bicicleta, a ativação dos músculos extensores da coluna e a ação de cargas mecânicas nas estruturas da coluna tem sido apontados como possíveis causas da dor. Embora relatados e aparentemente aceitos, poucos estudos objetivaram investigar estes fatores. Em adição, a dor crônica não específica é frequentemente diagnosticada em ciclistas, pois poucas evidências de anormalidade são observadas quando realizados exames radiológicos clínicos. O emprego de métodos biomecânicos de investigação, como a estimativa da magnitude da força muscular dos extensores da coluna e da força articular em diferentes níveis da coluna poderia contribuir para avaliação do risco de lesão e dor em decorrência do ciclismo, além de auxiliar na criação de estratégias de prevenção e programas de reabilitação. Assim, este estudo teve como objetivo quantificar e comparar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas, por meio do desenvolvimento e aplicação de um modelo biomecânico tridimensional in vivo. O modelo biomecânico proposto foi composto por dois segmentos rígidos (coluna cervical superior e inferior) conectados. O segmento coluna cervical superior compreende a cabeça, C1 e C2. O segmento coluna cervical inferior compreende as vértebras cervicais de C3 a C7. No segmento coluna cervical superior são considerados dois vetores de força muscular: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) e FM2 (semispinalis capitis e splenius capitis). Já no segmento coluna cervical inferior estão inclusos os vetores FM3 (semispinalis cervicis) e FM4 (splenius cervicis). A resolução das equações de movimento de Newton-Euler é realizada por meio da solução inversa. Os parâmetros cinemáticos foram obtidos utilizando imagens externas da cabeça e coluna cervical, adquiridas por meio de quatro câmeras de vídeo digital com frequencia de amostragem de 25 Hz. Para estimar a localização dos centros de rotação (C2-3 e C6-7) foram realizados exames radiológicos convencionais estáticos. Os parâmetros de massa e centro de massa foram retirados de tabelas antropométricas da literatura. Participaram do estudo 12 ciclistas com pelo menos dois anos de experiência competitiva cada. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal do Rio Grande do Sul e os sujeitos assinaram um termo de consentimento livre e esclarecido. Cada participante foi avaliado utilizando sua própria bicicleta acoplada a um ciclossimulador magnético, em duas etapas realizadas no mesmo dia. Inicialmente foi mensurada a massa corporal total do individuo e em seguida identificados e marcados 14 pontos anatômicos de interesse com uma caneta dermatográfica. Durante as avaliações foram fixos marcadores revestidos com papel reflexivo e contendo chumbo no interior em todos os pontos anatômicos de interesse. Na Etapa I os sujeitos pedalaram durante 2 minutos em cada postura (ereta, descanso, intermediária, ataque e cotovelos flexionados), sendo coletados dados cinemáticos durante os últimos 30 segundos de cada uma. Na Etapa II foram realizados exames radiológicos estáticos em cada uma das 5 posturas analisadas (ereta, descanso, intermediária, ataque e cotovelos flexionados) e em flexão e extensão máximas da coluna cervical. Os resultados indicam que as forças internas atuantes nas estruturas da coluna cervical apresentaram maiores magnitudes nas posturas que envolvem a prática do ciclismo (descanso, intermediária, ataque e cotovelos flexionados), quando comparadas a postura de referência (ereta). Observando somente as posturas que envolvem o ciclismo, as forças internas aumentaram gradativamente a medida que os ciclistas transferiram o apoio de suas mãos da região superior para a região inferior do guidão, adotando as posturas descanso, intermediária e ataque, respectivamente. Entretanto, as maiores magnitudes das forças internas foram observadas quando os ciclistas efetuaram o apoio das mãos envolvendo os manetes e flexionaram a articulação do cotovelo (postura cotovelos flexionados). Proporcionalmente os maiores aumentos das forças internas ocorreram na coluna cervical superior, porém as maiores magnitudes das forças internas foram alcançadas na coluna cervical inferior. O processo de avaliação demonstrou que o modelo biomecânico tridimensional da coluna cervical proposto foi considerado capaz de representar de maneira confiável o sistema de interesse. Os resultados encontrados são coerentes, sendo o modelo um instrumento adequado para estimar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas. / High index of cervical and lumbar pain had been registered in cyclists. Factors as a posture adopted on bicycle, the activity of spine extensor muscles and the action of mechanical load in the spine structures had been put like possible causes of pain. Although related and apparently accepted, few studies investigate these factors. In addition, the non-specific chronic pain is frequently diagnosed in cyclists, because few evidences of abnormalities are investigated when clinic radiologics exams are done. The use of biomechanical methods of investigation, like the estimate of muscular force magnitude of extensors of spine and of joint force in different levels of spine can be contributed to evaluation of injury risk and pain caused by cycling, beyond the assist in strategies of prevention and rehabilitation programs. Therefore, this study had like objective to quantify and compare the active internal forces in the cervical spine during cycling in different postures, through development and application of three dimensional in vivo biomechanical model. The biomechanical model suggested was compound by two rigid segments (upper and lower cervical spine) connected. The upper cervical spine segment include head, C1 and C2. The lower cervical spine segment include cervical vertebraes of C3 to C7. In the upper cervical spine segment are considered two vectors of muscular force: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) and FM2 (semispinalis capitis e splenius capitis). In the lower cervical spine segment are included the vectors FM3 (semispinalis cervicis) and FM4 (splenius cervicis). The resolution of movement equation of Newton-Euler is done through inverse dynamics. The kinematic parameters were obtained using external images of head and cervical spine, acquired by four digital video cameras with sampling frequency of 25 Hz. To estimate the location of rotation centers (C2-3 and C6-7) statics conventional radiologic exams were done. The parameters of mass and center of mass were removed of anthropometric tables of literature. 12 cyclists with at least two years of competitive experience each one participated of the study. The study was approved by Ethics Committee in Researches of Federal University of Rio Grande do Sul and the subjects signed a free and clear consent term. Each participant was assessed using your bicycle attached in a magnetic cycle simulator, in two stages done in the same day. Initially the total body mass of subjects was measured and then 14 anatomic points of interest were identified and marked with a dermatography pen. During the evaluation markers encased with reflective paper and containing lead inside of these markers were fixed in all anatomic points of interest. In the stage I the subjects rode a bicycle during 2 minutes in each posture (upright neutral, rest, intermediate, attack and flexed elbows). The kinematic data were collected during the last 30 seconds of each one. In the stage II static radiologic exams were done in each of 5 analyzed postures (upright neutral, rest, intermediate, attack and flexed elbows) and in maxim flexion and extension of cervical spine. The results indicate that the internal forces active in the structures of cervical spine presented more magnitudes in the postures that involve the cycling practice (rest, intermediate, attack and flexed elbows), when compared to reference posture (upright neutral). Observing just the postures that involve the cycling, the internal forces gradually increased as cyclists transferred the your hands from upper to lower region of handlebar, adopting the rest, intermediate and attack postures, respectively. However, the greater magnitude of internal forces were observed when the cyclists hands involving the brake levers and flexed the elbow joints (flexed elbows posture). Proportionally the greatest increase of internal forces occurred in the upper cervical spine, however the greatest magnitudes of internal forces were reached in the lower cervical spine. The evaluation process demonstrated that the three dimensional biomechanical model of cervical spine was considered able to represent of reliable way the interest system. The results found are coherent, the model is an adequate instrument to estimate the internal forces active in the cervical spine during cycling in different postures.
13

Modelo biomecânico tridimensional para análise das forças internas atuantes na coluna cervical superior e inferior durante o ciclismo

Pasini, Maicon January 2009 (has links)
Elevados índices de dor cervical e lombar têm sido reportados em ciclistas. Fatores como a postura adotada na bicicleta, a ativação dos músculos extensores da coluna e a ação de cargas mecânicas nas estruturas da coluna tem sido apontados como possíveis causas da dor. Embora relatados e aparentemente aceitos, poucos estudos objetivaram investigar estes fatores. Em adição, a dor crônica não específica é frequentemente diagnosticada em ciclistas, pois poucas evidências de anormalidade são observadas quando realizados exames radiológicos clínicos. O emprego de métodos biomecânicos de investigação, como a estimativa da magnitude da força muscular dos extensores da coluna e da força articular em diferentes níveis da coluna poderia contribuir para avaliação do risco de lesão e dor em decorrência do ciclismo, além de auxiliar na criação de estratégias de prevenção e programas de reabilitação. Assim, este estudo teve como objetivo quantificar e comparar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas, por meio do desenvolvimento e aplicação de um modelo biomecânico tridimensional in vivo. O modelo biomecânico proposto foi composto por dois segmentos rígidos (coluna cervical superior e inferior) conectados. O segmento coluna cervical superior compreende a cabeça, C1 e C2. O segmento coluna cervical inferior compreende as vértebras cervicais de C3 a C7. No segmento coluna cervical superior são considerados dois vetores de força muscular: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) e FM2 (semispinalis capitis e splenius capitis). Já no segmento coluna cervical inferior estão inclusos os vetores FM3 (semispinalis cervicis) e FM4 (splenius cervicis). A resolução das equações de movimento de Newton-Euler é realizada por meio da solução inversa. Os parâmetros cinemáticos foram obtidos utilizando imagens externas da cabeça e coluna cervical, adquiridas por meio de quatro câmeras de vídeo digital com frequencia de amostragem de 25 Hz. Para estimar a localização dos centros de rotação (C2-3 e C6-7) foram realizados exames radiológicos convencionais estáticos. Os parâmetros de massa e centro de massa foram retirados de tabelas antropométricas da literatura. Participaram do estudo 12 ciclistas com pelo menos dois anos de experiência competitiva cada. O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Universidade Federal do Rio Grande do Sul e os sujeitos assinaram um termo de consentimento livre e esclarecido. Cada participante foi avaliado utilizando sua própria bicicleta acoplada a um ciclossimulador magnético, em duas etapas realizadas no mesmo dia. Inicialmente foi mensurada a massa corporal total do individuo e em seguida identificados e marcados 14 pontos anatômicos de interesse com uma caneta dermatográfica. Durante as avaliações foram fixos marcadores revestidos com papel reflexivo e contendo chumbo no interior em todos os pontos anatômicos de interesse. Na Etapa I os sujeitos pedalaram durante 2 minutos em cada postura (ereta, descanso, intermediária, ataque e cotovelos flexionados), sendo coletados dados cinemáticos durante os últimos 30 segundos de cada uma. Na Etapa II foram realizados exames radiológicos estáticos em cada uma das 5 posturas analisadas (ereta, descanso, intermediária, ataque e cotovelos flexionados) e em flexão e extensão máximas da coluna cervical. Os resultados indicam que as forças internas atuantes nas estruturas da coluna cervical apresentaram maiores magnitudes nas posturas que envolvem a prática do ciclismo (descanso, intermediária, ataque e cotovelos flexionados), quando comparadas a postura de referência (ereta). Observando somente as posturas que envolvem o ciclismo, as forças internas aumentaram gradativamente a medida que os ciclistas transferiram o apoio de suas mãos da região superior para a região inferior do guidão, adotando as posturas descanso, intermediária e ataque, respectivamente. Entretanto, as maiores magnitudes das forças internas foram observadas quando os ciclistas efetuaram o apoio das mãos envolvendo os manetes e flexionaram a articulação do cotovelo (postura cotovelos flexionados). Proporcionalmente os maiores aumentos das forças internas ocorreram na coluna cervical superior, porém as maiores magnitudes das forças internas foram alcançadas na coluna cervical inferior. O processo de avaliação demonstrou que o modelo biomecânico tridimensional da coluna cervical proposto foi considerado capaz de representar de maneira confiável o sistema de interesse. Os resultados encontrados são coerentes, sendo o modelo um instrumento adequado para estimar as forças internas atuantes na coluna cervical durante o ciclismo em diferentes posturas. / High index of cervical and lumbar pain had been registered in cyclists. Factors as a posture adopted on bicycle, the activity of spine extensor muscles and the action of mechanical load in the spine structures had been put like possible causes of pain. Although related and apparently accepted, few studies investigate these factors. In addition, the non-specific chronic pain is frequently diagnosed in cyclists, because few evidences of abnormalities are investigated when clinic radiologics exams are done. The use of biomechanical methods of investigation, like the estimate of muscular force magnitude of extensors of spine and of joint force in different levels of spine can be contributed to evaluation of injury risk and pain caused by cycling, beyond the assist in strategies of prevention and rehabilitation programs. Therefore, this study had like objective to quantify and compare the active internal forces in the cervical spine during cycling in different postures, through development and application of three dimensional in vivo biomechanical model. The biomechanical model suggested was compound by two rigid segments (upper and lower cervical spine) connected. The upper cervical spine segment include head, C1 and C2. The lower cervical spine segment include cervical vertebraes of C3 to C7. In the upper cervical spine segment are considered two vectors of muscular force: FM1 (rectus capitis posterior major, rectus capitis posterior minor, obliquus capitis superior e obliquus capitis inferior) and FM2 (semispinalis capitis e splenius capitis). In the lower cervical spine segment are included the vectors FM3 (semispinalis cervicis) and FM4 (splenius cervicis). The resolution of movement equation of Newton-Euler is done through inverse dynamics. The kinematic parameters were obtained using external images of head and cervical spine, acquired by four digital video cameras with sampling frequency of 25 Hz. To estimate the location of rotation centers (C2-3 and C6-7) statics conventional radiologic exams were done. The parameters of mass and center of mass were removed of anthropometric tables of literature. 12 cyclists with at least two years of competitive experience each one participated of the study. The study was approved by Ethics Committee in Researches of Federal University of Rio Grande do Sul and the subjects signed a free and clear consent term. Each participant was assessed using your bicycle attached in a magnetic cycle simulator, in two stages done in the same day. Initially the total body mass of subjects was measured and then 14 anatomic points of interest were identified and marked with a dermatography pen. During the evaluation markers encased with reflective paper and containing lead inside of these markers were fixed in all anatomic points of interest. In the stage I the subjects rode a bicycle during 2 minutes in each posture (upright neutral, rest, intermediate, attack and flexed elbows). The kinematic data were collected during the last 30 seconds of each one. In the stage II static radiologic exams were done in each of 5 analyzed postures (upright neutral, rest, intermediate, attack and flexed elbows) and in maxim flexion and extension of cervical spine. The results indicate that the internal forces active in the structures of cervical spine presented more magnitudes in the postures that involve the cycling practice (rest, intermediate, attack and flexed elbows), when compared to reference posture (upright neutral). Observing just the postures that involve the cycling, the internal forces gradually increased as cyclists transferred the your hands from upper to lower region of handlebar, adopting the rest, intermediate and attack postures, respectively. However, the greater magnitude of internal forces were observed when the cyclists hands involving the brake levers and flexed the elbow joints (flexed elbows posture). Proportionally the greatest increase of internal forces occurred in the upper cervical spine, however the greatest magnitudes of internal forces were reached in the lower cervical spine. The evaluation process demonstrated that the three dimensional biomechanical model of cervical spine was considered able to represent of reliable way the interest system. The results found are coherent, the model is an adequate instrument to estimate the internal forces active in the cervical spine during cycling in different postures.
14

A biomechanical model of femoral forces during functional electrical stimulation after spinal cord injury in supine and seated positions

McHenry, Colleen Louise 01 July 2010 (has links)
Following a spinal cord injury (SCI), the paralyzed extremities undergo muscle atrophy and decrease in bone mineral density (BMD) due in part to the loss of physiological loading. It is crucial to prevent musculoskeletal deterioration so the population is less susceptible to fractures, and could take advantage of stem cell treatment if it becomes available. Functional electrical stimulation (FES) has been shown to advantageously train the paralyzed extremities. However, there is a risk of fracture during FES due to low BMD of individuals with SCI. Therefore, the forces generated during FES need to be modeled so researchers and clinicians safely administer this intervention. The purpose of this project was to develop a biomechanical or mathematical model to estimate the internal compressive and shear forces at the distal femur, a common fracture site for individuals with SCI during FES. Therefore, a two-dimensional static model was created of the lower extremity in the supine and seated positions. The compressive and shear forces at the distal femur were estimated for both positions during FES. These internal compressive and shear forces estimated at the distal femur by the supine model were compared to those estimated by the standing model. Also, for the seated model, the compressive and shear forces at the distal femur estimated by a tetanic muscle contraction were compared to those estimated by a doublet muscle contraction. Finally, the supine model was validated using experimental testing. The primary findings are 1) the standing model estimated more compressive force and less shear force at the distal femur compared to the supine model when position and quadriceps muscle force remain constant and 2) for the seated model, a tetanic quadriceps muscle contraction predicts greater compressive and shear at the distal femur compared to a doublet muscle contraction. Also the validation testing revealed a 3.4% error between the supine model and the experimental testing. These models provide valuable insights into the internal forces at the distal femur during FES for those with SCI.
15

Creation and Validation of a Dynamic, EMG-Driven Cervical Spine Model

Huber, Zach Elijah 09 August 2013 (has links)
No description available.
16

Mechanism of Hip Dysplasia and Identification of the Least Energy Path for its Treatment by using the Principle of Stationary Potential Energy

Zwawi, Mohammed Abdulwahab M. 01 January 2015 (has links)
Developmental dysplasia of the hip (DDH) is a common newborn condition where the femoral head is not located in its natural position in the acetabulum (hip socket). Several treatment methods are being implemented worldwide to treat this abnormal condition. One of the most effective methods of treatment is the use of Pavlik Harness, which directs the femoral head toward the natural position inside the acetabulum. This dissertation presents a developed method for identifying the least energy path that the femoral head would follow during reduction. This is achieved by utilizing a validated computational biomechanical model that allows the determination of the potential energy, and then implementing the principle of stationary potential energy. The potential energy stems from strain energy stored in the muscles and gravitational potential energy of four rigid-body components of lower limb bones. Five muscles are identified and modeled because of their effect on DDH reduction. Clinical observations indicate that reduction with the Pavlik Harness occurs passively in deep sleep under the combined effects of gravity and the constraints of the Pavlik Harness. A non-linear constitutive equation, describing the passive muscle response, is used in the potential energy computation. Different DDH abnormalities with various flexion, abduction, and hip rotation angles are considered, and least energy paths are identified. Several constraints, such as geometry and harness configuration, are considered to closely simulate real cases of DDH. Results confirm the clinical observations of two different pathways for closed reduction. The path of least energy closely approximated the modified Hoffman-Daimler method. Release of the pectineus muscle favored a more direct pathway over the posterior rim of the acetabulum. The direct path over the posterior rim of the acetabulum requires more energy. This model supports the observation that Grade IV dislocations may require manual reduction by the direct path. However, the indirect path requires less energy and may be an alternative to direct manual reduction of Grade IV infantile hip dislocations. Of great importance, as a result of this work, identifying the minimum energy path that the femoral head would travel would provide a non-surgical tool that effectively aids the surgeon in treating DDH.
17

Effects of a Cognitive Dissonance State on Psychological, Physiological, and Biomechanical Variables Associated with Low Back and Neck Pain

Weston, Eric Brian 12 September 2022 (has links)
No description available.
18

Caractérisation mécanique du bois vert au cours de sa maturation et modélisation de la réaction gravitropique de jeunes peupliers / Mechanical characterization of green wood during maturation process and modeling of gravitropic reaction of young poplars

Pot, Guillaume 11 October 2012 (has links)
Les arbres sont capables de modifier l’orientation de leurs branches et de leur tronc par la production asymétrique de bois précontraint. Il existe des modèles biomécaniques développés pour simuler ces mouvements, mais ils ne simulent pas correctement le redressement (ou mouvement gravitropique) de jeunes arbres à l’échelle de temps intra-annuelle. La méconnaissance de la cinétique de maturation et des propriétés mécaniques du bois vert est responsable de ces résultats. Les travaux présentés dans ce mémoire ont pour objectifs de caractériser le comportement mécanique du bois vert au cours de sa maturation, et de développer un modèle biomécanique qui puisse simuler quantitativement le gravitropisme de jeunes peupliers. Des comportements mécaniques non-linéaires sont révélés par des essais de traction cycliques sur de fines lamelles de bois vert. Ils sont quantifiés par une grandeur mécanique liant rigidité et déformation. Des essais de flexion réalisés sur des planchettes renseignent quant à eux sur l’évolution intra-cerne du module élastique. Ces campagnes d’essais montrent une augmentation puis une diminution du module au cours de la maturation des cellules. Des essais de fluage indiquent que le comportement viscoélastique du bois vert se modélise par un modèle de Burgers. Les propriétés viscoélastiques du bois vert sont ainsi déterminées. Les propriétés mécaniques obtenues sont utilisées dans un modèle biomécanique développé pour modéliser l’évolution spatio-temporelle des propriétés. Le gravitropisme de jeunes peupliers est alors modélisé grâce à la prise en compte du comportement viscoélastique du bois vert, de la maturation continue des cellules, et de la variation des déformations de maturation au cours de la saison de végétation. / Trees are able to modify the orientation of their trunk and branches by asymmetrical production of prestressed wood. Biomechanical models designed to simulate these movements exist, but they cannot fit the righting-up movement (also called gravitropism) of young poplar trees at the intra-annual scale. The lack of knowledge of green wood maturation and mechanical properties is suspected to be responsible for this discrepancy. The aims of this study are to characterize mechanical properties of green wood during the maturation process, and to develop a biomechanical model that simulates quantitatively the gravitropism of young poplars. Nonlinear mechanical behavior is observed in cyclic tensile tests performed on thin lamellas of green wood. A relationship between stiffness and strain enables the characterization of this behavior. The intra-ring evolution of modulus of elasticity is measured using 3-points bending tests on small boards. Both of these experimental campaigns show that wood stiffness increases then decreases while cells are maturating. Creep tests show that green wood viscoelastic behaviour is described by a Burgers’ model. As a result, green wood viscoelastic properties are determined. These mechanical properties are used in a new biomechanical model designed for considering spatio-temporal evolutions of wood properties. Then the gravitropic movements of young poplars are simulated by considering viscoelastic behaviour of green wood, continuous maturation of cells, and variation of maturation strains along the growing season.
19

Biomechanické následky tržných poranění musculus levator ani vzniklých při vaginálním porodu / The biomechanical effects of levator ani muscle laceration injuries after vaginal delivery

Křepelka, Petr January 2013 (has links)
Title: The biomechanical effects of levator ani muscle laceration injuries after vaginal delivery Objectives: The aim of this thesis is to sum up current knowledge about the normal structure and function of levator ani muscle and findings about dysfunctions of a pelvic floor. By means of biomechanical instruments to analyse how the lower part of levator ani muscle closes (puborectalis muscle) during unilateral avulsion lesion. On the basis of computer simulation of biomechanical properties of the pelvic floor during avulsion lesion to describe the theoretical solutions for the therapy of the main types of dysfunctions of the pelvic floor. Methods: Biomechanical analysis was used with a help of computer model of muscular pelvic floor with a help of the ABAQUS model. This model with matched properties of muscular tissue was influenced by the standard pressure which influences the pelvic floor for a person of 80 kilos standing at rest. This model simulated unilateral avulsion lesion and biomechanical variables were observed during compensatory activation of uninjured parts of levator with the activity 100%, 50% and 10%. The map of the muscular tone and the rate of movement of the muscles of the pelvic floor were evaluated. Results: Only minimal movement is observed in the intact pelvic floor during...
20

Analýza dynamického chování štíhlých konstrukcí a návrh zařízení na omezení vibrací / Analysis of dynamical behaviour of slender structures and design of device to reduce vibration

Hanzlík, Tomáš January 2018 (has links)
Thesis deals with the modeling of pedestrian excitation of structures and obtaining the corresponding dynamic response of the structure. The trend of modern slender structures places more emphasis on the accuracy of modeling pedestrian dynamic excitation, which is difficult because of the intelligent behavior of pedestrians and the biological nature of the modeled pedestrian. First part of the thesis deals with traditional models of pedestrian excitation, based on application of pedestrian ground force to the model of construction. Models are explored on a model of slender footbridge for many different excitation variants in order to explore the specifics of the force excitation application and the structure response calculation. In second part of the thesis biomechanical pedestrian models are developed, including inertial forces, to calculate the pedestrian interaction with the structure. Parametric studies carried out on simplified structural models research the influence of design parameters of biomechanical models on dynamic response. The aim is to obtain a more accurate model of the pedestrian-construction system for refinement of the design of structures. The design of a tuned mass dampers for the reduction of pedestrian induced vibrations is also explored. Tuned mass dampers are devoted to parametric studies that deal with the influence of design parameters of the damper on the efficiency and design requirements of the device. The aim is to explore the design parameters and their influence on the efficient and economical design of the device. In the thesis were developed two biomechanical models, a simple biomechanical model with one vertical degree of freedom and a bipedal model of a human walking. Models have proven a certain degree of interaction when exciting light footbridges by one pedestrian. Bipedal model then also brought a partial insight into the mechanics of walking and the causes of pedestrian contact forces.

Page generated in 0.1025 seconds