Spelling suggestions: "subject:"biomedical amaging"" "subject:"biomedical damaging""
61 |
Nouveaux complexes borates fluorescents : synthèses, propriétés et applications / New fluorescent borate complexes : syntheses, properties, applicationsFrath, Denis 12 July 2013 (has links)
Les travaux réalisés aux cours de cette thèse ont portés sur la création de nouveaux complexes borates fluorescents. Des voies de synthèse relativement simples et efficaces ont permis d’accéder à deux nouvelles familles de fluorophores : les Boranils et les Boricos. Les Boranils présentent des coefficients d’absorption molaire élevés, des rendements quantiques pouvant atteindre 90% et la capacité à agir comme antenne efficace pour du transfert d’énergie photoinduit. De nombreuses modifications post-synthétiques ont été mises au point permettant l’accès à des fonctions de greffage utile pour des applications dans le domaine des cristaux liquides ou l’imagerie biomédicale. Enfin, l’extension de la conjugaison des Boranils a permis de déplacer les émissions vers le proche infrarouge. Les Boricos présentent des coefficients d’absorption élevés, des rendements quantiques allant jusqu'à 81% et la capacité à agir comme antenne ou accepteur dans des systèmes de transfert d’énergie photoinduit. / This work is dealing with new fluorescent boron complexes. Simple and efficient synthetic pathways have been described to access to two new families of fluorophores: Boranils and Boricos. Boranils present good molar absorption coefficients, high quantum yields up to 90% and the ability to act as efficient antennae for photoinduced energy transfer. Several post-synthetic modifications have been carried out leading to linking functions useful in the liquid crystal and biomedical imaging fields. Then the electronic delocalization has been extended on Boranils resulting in near-infrared emitting dyes. Boricos present good molar absorption coefficients, high quantum yield up to 81%, and the ability to act as an antenna or acceptor in photoinduced energy transfer systems.
|
62 |
NANOMÉDECINE THÉRANOSTIQUE ACTIVÉE À DEUX-PHOTONS POUR LE TRAITEMENT DU CANCER / TWO-PHOTON-ACTUATED THERANOSTIC NANOMEDICINE FOR CANCER TREATMENTCroissant, Jonas 21 July 2014 (has links)
La nanomédecine activée à deux-photon est devenue l'un des principaux candidats à l'accomplissement de la sélectivité spatiotemporelle nécessaire pour la nanomédecine. En effet, la raison d'être de l'application médicale de nanotechnologie dans le domaine du traitement du cancer est de diminuer et supprimer les effets secondaires causés par les techniques actuelles telles que la chimiothérapie et la radiothérapie, à cause de leur manque de sélectivité. Parmi diverses nanoparticules (NPs), les nanoparticules de silice mésoporeuse (MSN) ont attiré une attention croissante dans la dernière décennie pour leur faible cytotoxicité, leur internalisation cellulaire et excrétion, et leur capacité de combiner de nombreuses fonctions à la fois pour le diagnostique et la thérapie de cancers via un seul nanovéhicule : l'ainsi appelée nanomédecine théranostique.Dans cette thèse, des MSN pour l'activation à un et deux-photon d'imagerie par fluorescence, de délivrance de principe actifs et d'acides nucléiques, et de photothérapie dynamique (PTD), seront présentées. Premièrement, le relargage contrôlé de molécules encapsulées dans des MSN fonctionnalisées avec des nanovalves est considéré par effet plasmonique. La photodégradation contrôlée de la silice soumise à l'effet photothermique de NPs d'or est ensuite étudiée. Deuxièmement, l'activation biphotonique est considérée pour la délivrance contrôlée de molécules anticancéreuses in-vitro par avec des nano-rotor et des nano-valves, ainsi que la fonctionnalisation de surface des NPs par des dérivés d'ammonium- azobenzene pour la délivrance d'acides nucléiques. Troisièmement, des MSN multifonctionnelles incorporant des photosensibilisateurs à deux-photon sont systématiquement étudiées en termes de leurs propriétés optiques et photophysiques; la sélection du meilleur matériau est suivie d'applications biomédicales in-vitro.De plus, deux types de nanomatériaux émergeant sont également élaborés pour la nanomédecine activée à deux-photon, des NPs de polysilsesquioxane pontés (BS) et d'organosilice mésoporeuse périodiques (PMO). Ces matériaux furent élaborés sans précurseur de silice (tétraéthoxysilane par exemple), et seulement à partir de bis- ou multi-organoalkoxysilane, afin d'obtenir le plus haut pourcentage de matière organique pour l'application ciblée. En conséquence, des NPs de BS et de PMO hybrides à base de disulfures se révélèrent être des outils biodégradables, et les NPs à base de photosensibilisateurs furent appliquées pour la PTD à deux-photon. Des NPs de BS et de cœur-coquille d'or-BS sont synthétisées pour d'efficaces imagerie et PTD à deux-photon, tandis que des NPs de PMO servirent de nano-plateformes théranostiques. En outre, diverse NPs de PMO multipodes à surface spécifique très élevées sont présentées pour la construction de structuration complexe à l'échelle nanométrique.Enfin, des nano-conteneurs d'MSN composées de cœur d'oxyde de fer (Fe3O4@MSN) sont décrites pour de multiples applications. D'une part, l'élaboration de NPs MSN (et PMO) magnétiques sensibles à deux-photon est étudiée en tant que perspective pour la délivrance de gène combinant l'imagerie par résonance magnétique. D'autre part, les conteneurs de Fe3O4@MSN sont misent en œuvre et appliqués pour la dépollution de métaux lourds via la fonctionnalisation d'un ligand de type acide diéthylène triamine penta acétique. L'augmentation de l'efficacité de la dépollution est étudiée par la fonctionnalisation de la surface extérieure et/ou des pores des Fe3O4@MSN. / Two-photon actuated nanomedicine has become one of the main proponents for the achievement of the spatiotemporal selectivity needed for nanomedicine. Indeed, the raison d'être of the medical application of nanotechnology in the field of cancer treatment is to lower and suppress the side effects caused by current techniques such as chemotherapy and radiotherapy, due to their lack of selectivity. Among various nanoparticles (NPs), mesoporous silica nanoparticles (MSN) have attracted increasing attention over the past decade for their low cytotoxicity, cellular internalization and excretion, and the ability to carry multiple features for both the diagnosis and therapy of cancers in a single nanovehicle: the so-called theranostic nanomedicine.In this dissertation, I will describe MSN for one and/or two-photon-actuated fluorescence imaging, drug-delivery, gene delivery and photodynamic therapy (PDT). First, plasmonically-triggered cargo delivery via MSN nanovalves and designed mesoporous silica photodegradation is presented. Then, in-vitro two-photon-triggered drug delivery with azobenzene-functionalized MSN such as nanoimpellers and fluorescent nanovalves, along with preliminary studies of gene delivery via ammonium-functionalized nanoimpellers are discussed. Multifunctional MSN incorporating a two-photon photosensitizer are systematically studied in terms of the resulting optical and photophysical properties of the NPs, and then used for in-vitro biomedical applications.Furthermore, two kinds of emerging nanomaterials are also designed for two-photon actuated nanomedicine, bridged silsesquioxane (BS) and periodic mesoporous organosilica (PMO) NPs. These nanomaterials are elaborated without silica precursor (e.g. tetraethoxysilane) and solely with bis- or tetra-organoalkoxysilanes, thus providing materials with the highest organic content for the targeted applications. Consequently, disulfide-based hybrid BS and PMO NPs were elaborated as biodegradable nanomedical tools, and photosensitizer-based BS and PMO NPs were used for efficient in-vitro PDT. BS and gold-BS core-shells NPs are constructed for ultrabright two-photon imaging and efficient PDT, while two-photon functionalized PMO NPs serve as theranostic nanocarriers. Besides, versatile multipodal ethylene-benzene PMO NPs with very high surface areas are presented as a promising strategy for the design of structural complexities at the nanoscale.Finally, iron oxide core MSN shell (Fe3O4@MSN) nanocontainers are described for versatile applications. The design of two-photon-sensitive magnetic MSN and PMO core-shell nanovehicles is presented as a perspective for gene delivery and magnetic resonance imaging. Furthermore, Fe3O4@MSN containers are constructed for heavy metal removal of twelve of the most toxic metal ions through the diethylene triamine pentaacetic acid (DTPA) ligand. The enhancement of the pollutant removal efficiency is studied by selective surface and/or porous DTPA functionalizations.
|
63 |
Imagerie multimodale optique, élastique et photo-thermique des tissus biologiques par OCT plein champ / Optic, elastic and photothermal tomography using full field OCT : a new kind of multimodal imaging for biological tissuesNahas, Amir 21 November 2014 (has links)
L’OCT plein champ est une technique d’imagerie permettant de faire de la microscopie des milieux diffusants à une profondeur donné à l’aide d’un système interférométrique. L’un des principaux objectifs qui ont motivé le développement de l’OCT plein champ ces dernières années a été de pouvoir fournir au chirurgien, durant les opérations des images similaires aux coupes histologiques mais en temps réel. Actuellement, les diagnostiques effectué à partir des images d’OCT plein champs donne de bon résultats, notamment dans le cas de certaine pathologie mammaire. Cependant, la différence majeure entre les coupes histologiques et les images d’OCT plein champs est qu’en OCT plein champ le contraste est uniquement un contraste morphologique et que dans certain cas, ce contraste seul ne suffit pas pour faire le diagnostic. Au cours des travaux de recherche décrits dans cette thèse nous nous sommes attachés à développer de nouvelles approches tomographiques, conduisant à de nouvelles formes de contraste susceptible d’enrichir les images d’OCT plein champ pour une meilleure qualité du diagnostic. Plus précisément, nous avons travaillé sur la détection optique et photo-thermique de nanoparticules d’or par OCT plein champ et la cartographie des propriétés mécaniques par trois méthodes dans le but de développer de nouveaux types de contrastes qui pourront permettre d’améliorer le diagnostic. / Full Field OCT (FF-OCT) is an imaging technic use to do microscopy inside scattering media at a given depth using an interferometric setup. One of the main objectives that motivated the development of FF-OCT was to provide during surgery to the surgeon images similar to histological slices but in real time. Currently, diagnostic made from FF-OCT images gives good results, especially in the case of some breast disease. However, the major difference between the histological and FF-OCT is that FF-OCT has only a morphological contrast and in some cases, this contrast is not enough to make the diagnosis. In the research described in this thesis we are committed to developing new tomographic approaches, leading to new forms of contrast may enhance images of FF- OCT for a better quality of diagnosis. Specifically, we worked on the optical and photothermal detection of gold nanoparticles by FF-OCT and the mechanical properties mapping by three methods in order to develop new types of contrasts that will help improve the diagnosis.
|
64 |
Investigation of Laser Speckle Contrast Imaging's Sensitivity to FlowYoung, Anthony M. 30 July 2018 (has links)
No description available.
|
65 |
Lokalisering av brunnar i ELISpotModahl, Ylva, Skoglund, Caroline January 2019 (has links)
Health is a fundamental human right. To increase global health, research in the medical sector is of great importance. Decreasing time consumption of biomedical testing could accelerate the research and development of new drugs and vaccines. This could be achieved by automation of biomedical analysis, using computerized methods. In order to perform analysis on pictures of biomedical tests, it is important to identify the area of interest (AOI) of the test. For example, cells and bacteria are commonly grown in petri dishes, in this case the AOI is the bottom area of the dish, since this is where the object of analysis is located.This study was performed with the aim to compare a few computerized methods for identifying the AOI in pictures of biomedical tests. In the study, biomedical images from a testing method called ELISpot have been used. ELISpot uses plates with up to 96 circular wells, where pictures of the separate wells were used in order to find the AOI corresponding to the bottom area of each well. The focus has been on comparing the performance of three edge detection methods. More specifically, their ability to accurately detect the edges of the well. Furthermore, a method for identifying a circle based on the detected edges was used to specify the AOI.The study shows that methods using second order derivatives for edge detection, gives the best results regarding to robustness.
|
66 |
QUANTIFICATION OF CARDIOVASCULAR DISEASE PROGRESSION THROUGH NON-INVASIVE IMAGINGSydney Quinn Clark (15355594) 27 April 2023 (has links)
<p> </p>
<p>Cardiovascular disease has been the leading cause of death in the United States for over 70 years. To evaluate the extent and progression of cardiovascular disease, non-invasive imaging techniques are frequently used clinically and pre-clinically. Current echocardiographic and cine magnetic resonance approaches rely on measurements that are typically obtained from two-dimensional images, which assumes uniformity of the structure being evaluated. To explore methods to potentially address these shortcomings, our group has developed and validated high frequency four-dimensional ultrasound techniques as well as created a software toolbox that allows for measurement of myocardial kinematics. In this thesis, I assisted in the application of these methods to two murine models of disease states: myocardial infarction and aortic aneurysm. Another study I aided in focused on cardiac magnetic resonance imaging data from patients with Duchenne muscular dystrophy. From our software, we are able to obtain various strain and strain rate estimates that reveal significant functional changes in infarction and Duchenne muscular dystrophy earlier than standard measurement techniques. Furthermore, we are able to identify vascular expansion, transmural thickening, and changes in hemodynamics prior to aneurysm development. Earlier detection and localization allows for more targeted surveillance and interventions, which ultimately may result in improved clinical outcomes. Ideally, these findings can be used to expand the capabilities of cardiac research and the development of clinically applicable imaging techniques and treatments to better address underlying cardiovascular pathophysiology. </p>
|
67 |
The development, validation, and characterization of an ex-vivo porcine full thickness skin model for the study of the subcutaneous compartmentJordanna Michelle Payne (15348601) 27 April 2023 (has links)
<p>This dissertation details the creation, validation, and characterization of a porcine ex-vivo culture model to study subcuteneous tissue. The viability of the model was assessed over seven days of culture by digestion and the proliferation and death of cells was monitored by immunohistochmeical labelling and image analysis. The model was then used in a timecourse proteomics experiment to characterize the effect of culture on subcutaneous proteome. The model was then compared to a commercially available human ex-vivo model with respect to viability and changes to the subcutaneous proteome. </p>
|
68 |
Imaging Corneal Nerve ActivityMcPheeters, Matthew Thomas 01 September 2021 (has links)
No description available.
|
69 |
PREDICTION OF MULTI-PHASE LIVER CT VOLUMES USING DEEP NEURAL NETWORKAfroza Haque (17544888) 04 December 2023 (has links)
<p dir="ltr">Progress in deep learning methodologies has transformed the landscape of medical image analysis, opening fresh pathways for precise and effective diagnostics. Currently, multi-phase liver CT scans follow a four-stage process, commencing with an initial scan carried out before the administration of <a href="" target="_blank">intravenous (IV) contrast-enhancing material</a>. Subsequently, three additional scans are performed following the contrast injection. The primary objective of this research is to automate the analysis and prediction of 50% of liver CT scans. It concentrates on discerning patterns of intensity change during the second, third, and fourth phases concerning the initial phase. The thesis comprises two key sections. The first section employs the non-contrast phase (first scan), late hepatic arterial phase (second scan), and portal venous phase (third scan) to predict the delayed phase (fourth scan). In the second section, the non-contrast phase and late hepatic arterial phase are utilized to predict both the portal venous and delayed phases. The study evaluates the performance of two deep learning models, U-Net and U²-Net. The process involves preprocessing steps like subtraction and normalization to compute contrast difference images, followed by post-processing techniques to generate the predicted 2D CT scans. Post-processing steps have similar techniques as in preprocessing but are performed in reverse order. Four fundamental evaluation metrics, including <a href="" target="_blank">Mean Absolute Error (MAE), Signal-to-Reconstruction Error Ratio (SRE), Peak Signal-to-Noise Ratio (PSNR), and Structural Similarity Index Measure (SSIM), </a>are employed for assessment. Based on these evaluation metrics, U²-Net performed better than U-Net for the prediction of both portal venous (third) and delayed (fourth) phases. Specifically, U²-Net exhibited superior MAE and PSNR results for the predicted third and fourth scans. However, U-Net did show slightly better SRE and SSIM performance in the predicted scans. On the other hand, for the exclusive prediction of the fourth scan, U-Net outperforms U²-Net in all four evaluation metrics. This implementation shows promising results which will eliminate the need for additional CT scans and reduce patients’ exposure to harmful radiation. Predicting 50% of liver CT volumes will reduce exposure to harmful radiation by half. The proposed method is not limited to liver CT scans and can be applied to various other multi-phase medical imaging techniques, including multi-phase CT angiography, multi-phase renal CT, contrast-enhanced breast MRI, and more.</p>
|
70 |
<strong>Platforms for Molecular Mechanisms and Improvement in Subcutaneous Injection of Biotherapeutics</strong>Mazin H Hakim (16657281) 03 August 2023 (has links)
<p>Biotherapeutics, such as monoclonal antibodies (mAbs), represent a primary mechanism for treatment of human disease, and there has been a steady increase in Food and Drug Administration approvals since the first one in 1982. Subcutaneous (SC) injection of protein-based therapeutics is a convenient and clinically established drug delivery method that increases the convenience and reduces cost compared to other delivery methods. However, progress is needed to optimize bioavailability via this route. This dissertation describes the methods for evaluation of mass transport of high molecular weight proteins, such as mAbs, following SC injection using <em>in vitro</em> and <em>ex vivo</em> modeling developed to describe the factors relevant for optimal distribution prior to uptake into systemic circulation. The first chapter describes a novel collagen and hyaluronic acid (HA) based hydrogel for investigation of macromolecule transport based on the physiochemical properties of the diffusing molecule and the tissue matrix. This initial study demonstrated that, in collagen alone, collagen combined with HA, and HA alone, the molecules demonstrated different transport paradigms dependent primarily on molecule size, matrix viscosity, and electrostatic charge, respectively. This showed that the local tissue heterogeneity and therapeutic properties could be determining factors for molecule transport and bioavailability. The second, third, and fourth chapters describe two novel platforms for the investigation of injection plume formation in SC tissue utilizing three-dimensional X-ray tomography. Injection plume analysis has been studied comprehensively in the context of insulin transport using co-injection of radiopaque dyes to track the protein distribution. However high molecular weight therapeutics have vastly different physiochemical properties than insulin and are injected under different rates, concentrations, volumes, and viscosities due to dosing considerations. To address the gap mAb distribution, we first developed a novel protein conjugated to an x-ray contrast agent to directly track injection plume formation and investigated the effects of injection rate and tissue location through injections into ex vivo porcine tissue, described in chapters three and four. Ex vivo tissue analysis showed that the rate did not influence the distribution, however, plume volume was lower in porcine belly compared to neck tissue. Whereas porcine tissue is an excellent model to represent the structural features of human injection, the large heterogeneity between animal subjects and collected samples is a disadvantage. Therefore, the fourth chapter describes the fabrication of a gelatin hydrogel-based injection platform representing the dermal and subcutaneous tissue layers for controlled injection plume analysis. In summary, all three models represent useful platforms for the assessment of macromolecular mass transport, pharmaceutical autoinjector performance, as well as the potential impact of tissue properties and intersubject heterogeneity on plume formation. Overall, the findings in these studies might better inform drug designers and clinicians on how to most optimally engineer an injection to deliver the most efficient patient outcomes through better dosing and increased cost savings. </p>
|
Page generated in 0.0609 seconds