• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 7
  • 2
  • Tagged with
  • 89
  • 89
  • 67
  • 39
  • 24
  • 19
  • 16
  • 16
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Diffuse correlation spectroscopy for estimation of coagulation thickness : a phantom study

Alsadi, Zeyneb January 2019 (has links)
The objective of this preliminary study was to determine the potential of diffuse correlation spectroscopy (DCS) for assessment of coagulation depth. Coagulation of tissue can occur due to a number of different reasons such as thermal or electrical burns or radiofrequency ablation. DCS is a non-invasive optical technique which can be used to determine the optical and dynamic properties of tissue by fitting a theoretical model of photon propagation in multiply scattering tissue to experimental data obtained from measurements. The DCS measurements were performed on two-layered phantom models that represent healthy tissue with high flow properties with a layer of coagulated tissue with low flow properties on top. Three different phantom models were prepared using gelatin-Intralipid gels, PDMS, and nylon as an upper layer, and an Intralipid solution was used for the bottom layer for all three phantoms. DCS measurements were performed on all three phantom models with varying thicknesses of the upper layers, and varying source-detector separations. The acquired data from the DCS measurement were analyzed in MATLAB in order to obtain the electric field temporal autocorrelation function. A theoretical model describing photon propagation in a two-layered medium was fitted to the obtained data in order to extract the desired parameters. The results showed that the thickness of the gelatin-Intralipid gels could be extracted within a 0.5 mm certainty and the thickness of the PDMS phantoms could also be extracted within approximately 0.7 mm. For the nylon phantoms, the results obtained were not good because the fitting was not successful and the thickness was not extracted appropriately. There is potential in DCS for assessment of burn wound depth but further research and development has to be done in the field in order to obtain more accurate and reliable results.
72

Inflammation-related alterations of lipids after spinal cord injury revealed by Raman spectroscopy

Tamosaityte, Sandra, Galli, Robert, Uckermann, Ortrud, Sitoci-Ficici, Kerim H., Koch, Maria, Later, Robert, Schackert, Gabriele, Koch, Edmund, Steiner, Gerald, Kirsch, Matthias 09 September 2019 (has links)
Spinal cord injury (SCI) triggers several lipid alterations in nervous tissue. It is characterized by extensive demyelination and the inflammatory response leads to accumulation of activated microglia/macrophages, which often transform into foam cells by accumulation of lipid droplets after engulfment of the damaged myelin sheaths. Using an experimental rat model, Raman microspectroscopy was applied to retrieve the modifications of the lipid distribution following SCI. Coherent anti-Stokes Raman scattering (CARS) and endogenous two-photon fluorescence (TPEF) microscopies were used for the detection of lipid-laden inflammatory cells. The Raman mapping of CH2 deformation mode intensity at 1440 cm−1 retrieved the lipid-depleted injury core. Preserved white matter and inflammatory regions with myelin fragmentation and foam cells were localized by specifically addressing the distribution of esterified lipids, i.e., by mapping the intensity of the carbonyl Raman band at 1743 cm−1, and were in agreement with CARS/TPEF microscopy. Principal component analysis revealed that the inflammatory regions are notably rich in saturated fatty acids. Therefore, Raman spectroscopy enabled to specifically detect inflammation after SCI and myelin degradation products.
73

Terahertz Imaging for Cancer Detection

St. Peter, Benjamin A 01 January 2012 (has links) (PDF)
This project evaluates the ability of terahertz (THz) radiation to differentiate cancerous from non-cancerous human breast lumpectomy and mastectomy tissue. This is done by aiming a narrow-band THz beam at medical samples and measuring reflected power. THz images of specimens from Breast Conservation Surgery (BCS) were created using a gas laser source and mechanical scanning. The design and characterization of this system is discussed in detail. The images were correlated with optical histological micrographs of the same specimens and discrimination values of more than 70% were found for five of the six samples using Receiver Operating Characteristic (ROC) analysis.
74

The Electrical Properties of Human Tissue for the Diagnosis and Treatment of Melanoma Skin Cancer

Stante, Glenn Cameron 01 December 2009 (has links) (PDF)
This thesis discusses the research, experimental methods, and data gathered for the investigation of a novel method for the diagnosis of melanoma skin cancer. First, a background about human skin tissue is presented. Then, a detailed description of melanoma along with current diagnosis techniques and treatment options are presented. In the experimental methods, the electrical properties of several types of tissue were analyzed, the purpose of which was to discover if a tissue type can be distinguished by its electrical properties alone. This would allow for the diagnosis of melanoma to be done by examining the electrical properties of the suspected tumor and comparing the results to known values of healthy and cancerous skin. After analyzing the data, it was concluded that tissue types can be identified by their electrical properties and it may be possible to diagnose melanoma through this method. Finally, the possibility of using a similar technology and radiofrequency tissue ablation to treat melanoma is presented.
75

Characterization of Two Vernier-Tuned Distributed Bragg Reflector (VT-DBR) Lasers Used in Swept Source Optical Coherence Tomography (SS-OCT)

Bergdoll, Greg M 01 June 2015 (has links) (PDF)
Insight Photonic Solutions Inc. has continued to develop their patented VT-DBR laser design; these wavelength tunable lasers promise marked image-quality and acquisition time improvements in SS-OCT applications. To be well suited for SS-OCT, tunable lasers must be capable of producing a highly linear wavelength sweep across a tuning range well-matched to the medium being imaged; many different tunable lasers used in SS-OCT are compared to identify the optimal solution. This work electrically and spectrally characterizes two completely new all-semiconductor VT-DBR designs to compare, as well. The Neptune VT-DBR, an O-band laser, operates around the 1310 nm range and is a robust solution for many OCT applications. The VTL-2 is the first 1060 nm VT-DBR laser to be demonstrated. It offers improved penetration through water over earlier designs which operate at longer wavelengths (e.g. - 1550 nm and 1310 nm), making it an optimal solution for the relatively deep imaging requirements of the human eye; the non-invasive nature of OCT makes it the ideal imaging technology for ophthalmology. Each laser has five semiconductor P-N junction segments that collectively enable precise akinetic wavelength-tuning (i.e. - the tuning mechanism has no moving parts). In an SS-OCT system utilizing one of these laser packages, the segments are synchronously driven with high speed current signals that achieve the desired wavelength, power, and sweep pattern of the optical output. To validate the laser’s fast tuning response time necessary for its use in SS-OCT, a circuit model of each tuning section is created; each laser section is modeled as a diode with a significant lead inductance. The dynamic resistance, effective capacitance, and lead inductance of this model are measured as a function of bias current and the response time corresponding to each bias condition is determined. Tuning maps, spectral linewidths, and side-mode suppression ratio (SMSR) measurements important to SS-OCT performance are also collected. Measured response times vary from 700 ps to 2 ns for the Neptune and 1.2 to 2.3 ns for the VTL-2. Linewidth measurements range from 9 MHz to 124 MHz for the Neptune and 300 kHz to 2 MHz for the VTL-2. SMSR measurements greater than 38 dB and 40 dB were observed for the Neptune and VTL-2, respectively. Collectively, these results implicate the VT-DBR lasers as ideal tunable sources for use in SS-OCT applications.
76

Time-gated diffuse optical spectroscopy: experiments on layered media

McMaster, Carter Benjamin 26 July 2022 (has links)
No description available.
77

Nonlinear dynamics of microcirculation and energy metabolism for the prediction of cardiovascular risk

Smirni, Salvatore January 2018 (has links)
The peripheral skin microcirculation reflects the overall health status of the cardiovascular system and can be examined non-invasively by laser methods to assess early cardiovascular disease (CVD) risk factors, i.e. oxidative stress and endothelial dysfunction. Examples of methods used for this task are the laser Doppler flowmetry (LDF) and laser fluorescence spectroscopy (LFS), which respectively allow tracing blood flow and the amounts of the coenzyme NAD(P)H (nicotamide adenine dinucleotide) that is involved in the cellular production of ATP (adenosine triphosphate) energy. In this work, these methods were combined with iontophoresis and PORH (post-occlusive reactive hyperaemia) reactive tests to assess skin microvascular function and oxidative stress in mice and human subjects. The main focus of the research was exploring the nonlinear dynamics of skin LDF and NAD(P)H time series by processing the signals with the wavelet transform analysis. The study of nonlinear fluctuations of the microcirculation and cell energy metabolism allows detecting dynamic oscillators reflecting the activity of microvascular factors (i.e. endothelial cells, smooth muscle cells, sympathetic nerves) and specific patterns of mitochondrial or glycolytic ATP production. Monitoring these dynamic factors is powerful for the prediction of general vascular/metabolic health conditions, and can help the study of the mechanisms at the basis of the rhythmic fluctuations of micro-vessels diameter (vasomotion). In this thesis, the microvascular and metabolic dynamic biomarkers were characterised <i>in-vivo</i> in a mouse model affected by oxidative stress and a human cohort of smokers. Data comparison, respectively, with results from control mice and non-smokers, revealed significant differences suggesting the eligibility of these markers as predictors of risk associated with oxidative stress and smoke. Moreover, a relevant link between microvascular and metabolic oscillators was observed during vasomotion induced by α-adrenergic (in mice) or PORH (in humans) stimulations, suggesting a possible role of cellular Ca<sup>2+ </sup>oscillations of metabolic origin as drivers of vasomotion which is a theory poorly explored in literature. As future perspective, further exploration of these promising nonlinear biomarkers is required in the presence of risk factors different from smoke or oxidative stress and during vasomotion induced by stimuli different from PORH or α-adrenergic reactive challenges, to obtain a full picture on the use of these factors as predictors of risk and their role in the regulation of vasomotion.
78

DIFFUSE OPTICAL MEASUREMENTS OF HEAD AND NECK TUMOR HEMODYNAMICS FOR EARLY PREDICTION OF CHEMO-RADIATION THERAPY OUTCOMES

Dong, Lixin 01 January 2015 (has links)
Chemo-radiation therapy is a principal modality for the treatment of head and neck cancers, and its efficacy depends on the interaction of tumor oxygen with free radicals. In this study, we adopted a novel hybrid diffuse optical instrument combining a commercial frequency-domain tissue oximeter (Imagent) and a custom-made diffuse correlation spectroscopy (DCS) flowmeter, which allowed for simultaneous measurements of tumor blood flow and blood oxygenation. Using this hybrid instrument we continually measured tumor hemodynamic responses to chemo-radiation therapy over the treatment period of 7 weeks. We also explored monitoring dynamic tumor hemodynamic changes during radiation delivery. Blood flow data analysis was improved by simultaneously extracting multiple parameters from one single autocorrelation function curve measured by DCS. Patients were classified into two groups based on clinical outcomes: a complete response (CR) group and an incomplete response (IR) group with remote metastasis and/or local recurrence within one year. Interestingly, we found human papilloma virus (HPV-16) status largely affected tumor homodynamic responses to therapy. Significant differences in tumor blood flow index (BFI) and reduced scattering coefficient (μs’) between the IR and CR groups were observed in HPV-16 negative patients at Week 3. Significant differences in oxygenated hemoglobin concentration ([HbO2]) and blood oxygen saturation (StO2) between the two groups were found in HPV-16 positive patients at Week 1 and Week 3, respectively. Receiver operating characteristic curves were constructed and results indicated high sensitivities and specificities of these hemodynamic parameters for early (within the first three weeks of the treatment) prediction of one-year treatment outcomes. Measurement of tumor hemodynamics may serve as a predictive tool allowing treatment selection based on biologic tumor characteristics. Ultimately, reduction of side effects in patients not benefiting from radiation treatment may be feasible.
79

Automation of Microscopic Tests for Cyto-diagnostics Using Custom-built Slide Scanner

Swetha, M January 2017 (has links) (PDF)
Optical microscopy is the simplest and the gold standard method adopted for the screening and subsequent diagnosis of various hematological and infectious diseases like malaria, sickle cell disease, tuberculosis etc. In addition to infectious disease diagnosis, its applications range from routine blood tests to the more sophisticated cancer biopsy sample analysis. Microscopy Tests (MTs) follow a common procedural workflow: (1) A technician prepares a smear of the given sample on a glass slide in a specific manner depending on the sample and the disease to be diagnosed; (2) The smeared slide is subsequently exposed to fixative agents and different histochemical stains specific to the diagnosis to be performed and (3) the prepared slide is then observed under a high quality bright- field bench-top microscope. An expert pathologist/cytologist is required to manually examine multiple fields-of-views of the prepared slide under appropriate magnification. Multiple re-adjustments in the focus and magnification makes the process of microscopic examination time consuming and tedious. Further, the manual intervention required in all the aforementioned steps involved in a typical MT, makes it inaccessible to rural/resource limited conditions and restricts the diagnostics to be performed by trained personnel in laboratory settings. To overcome these limitations, there has been considerable research interest in developing cost-effective systems that help in automating MTs. The work done in this thesis addresses these issues and proposes a two-step solution to the problem of affordable automation of MTs for cellular imaging and subsequent diagnostic assessment. The first step deals with the development of a low cost portable system that employs custom-built microscopy setup using o -the-shelf optical components, low cost motorized stage and camera modules to facilitate slide scanning and digital image acquisition. It incorporates a novel computational approach to generate good quality in-focus images, without the need for employing high-end precision translational stages, thereby reducing the overall system cost. The process of slide analysis for result generation is further automated by using image analysis and classification algorithms. The application of the developed platform in automating slide based quantitative detection of malaria is reported in this thesis. The second aspect of the thesis addresses the automation of slide preparation. A major factor that could influence the analysis results is the quality of the prepared smears. The feasibility of automating and standardizing the process of slide preparation using Microfluidics with appropriate surface fictionalization is explored and is demonstrated in the context of automated semen analysis. As an alternative to the mechanism of fixing the spermatozoa to the glass slide by smearing and chemical treatment with fixative, microfluidic chips pre-coated with adhesive protein are employed to capture and immobilize the cells. The subsequent histochemical staining is achieved by pumping the stains through the microfluidic device. The proof-of-principle experiments performed in this thesis demonstrate the feasibility of the developed system to provide an end-to-end cost-effective alternative solution to conventional MTs. This can further serve as an assistive tool for the pathologist or in some cases completely eliminate the manual intervention required in MTs enabling repeatability and reliability in diagnosis for clinical decision making
80

Espectroscopia óptica de difusão multiespectral para aplicações biomédicas / Multiespectral diffuse optical spectroscopy for biomedical aplications

Quiroga Soto, Andrés Fabián, 1987- 07 August 2016 (has links)
Orientador: Rickson Coelho Mesquita / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-30T22:43:33Z (GMT). No. of bitstreams: 1 QuirogaSoto_AndresFabian_M.pdf: 7858431 bytes, checksum: cab3b799ea039aaac9d7d8039a9590ed (MD5) Previous issue date: 2016 / Resumo: A espectroscopia óptica de difusão DOS é uma técnica que usa luz no regime do infravermelho próximo (NIR) para extração de informações fisiológicas em tecidos biológicos de forma não invasiva, tais como as concentrações de oxi-hemoglobina (HbO) , desoxi-hemoglobina (Hb) e a saturação de oxigênio no tecido (StO_2). Esta técnica baseia-se no fato de que a luz do infravermelho próximo se propaga difusivamente no tecido biológico, conseguindo se aprofundar alguns centímetros e voltar na superfície de incidência, e sofrendo alterações ao atravessar o meio devido à absorção e ao espalhamento do tecido. Este enfoque utiliza a equação de difusão para o modelamento da luz e suas soluções para conseguir as propriedades ópticas absolutas, que permite inferir as informações fisiológicas do tecido. A técnica experimental DOS utiliza fontes que emitem pulsos ultracurtos (Time Domain DOS) ou intensidades moduladas (Frequency Domain DOS) para extrair tais informações. No entanto, a implementação destas técnicas requerem uma eletrônica avançada, tornando a construção complicada ou a aquisição custosa. Por outro lado, os equipamentos que usam fontes contínuas medem apenas variações relativas dos coeficientes de absorção do tecido. Neste trabalho, estudou-se uma nova metodologia a partir da espectroscopia óptica de difusão usando fontes de onda contínua para vários comprimentos de ondas (CW-DOS) a fim de extrair os valores absolutos de absorção e espalhamento do tecido. A metodologia foi validada com dados ópticos em phantoms e camundongos, conseguindo inferir as propriedades ópticas absolutas para cada estágio. Os resultados refletem que a metodologia é uma boa alternativa para extração de informação fisiológica de forma simples e confiável, e que serve como base para a construção de novos equipamentos de DOS / Abstract: Diffuse Optical Spectroscopy (DOS) is a technique that employs near infrared (NIR) light to noninvasively extract physiological information from biological tissue, such as microvascular oxy-hemoglobin (HbO) and deoxy-hemoglobin (Hb) concentrations, and tissue oxygen saturation (StO_2). DOS is based on the fact that NIR light diffuses through deep tissue and interacts with tissue cells and molecules before returning to the surface. Therefore, the tissue composition can be estimated by the absorption and scattering coefficients, which can be monitored by the intensity detected of scattered light. DOS uses the diffusion equation for modeling light propagation, and its solutions to estimate the absolute optical properties. Typical experimental methods in DOS employ ultrashort-pulsed light sources (Time Domain DOS) or intensity modulated light sources (Frequency Domain DOS) to extract such information. However, the implementation of these techniques requires advanced electronics, which makes its use complicated and/or expensive. Instruments that use continuous-wave (CW- DOS) light sources are limited to estimate relative changes of the absorption coefficient, only. In this dissertation, we analyze a methodology based on continuous-wave diffuse optical spectroscopy with several wavelengths to estimate the absolute values of absorption and scattering coefficients of biological tissue. The methodology was validated in optical phantoms and in mice. Our results suggest that the methodology can be a good approach for estimating physiological information in a simple and reliable way, and it can be used as the basis for the construction of new DOS equipments / Mestrado / Física / Mestre em Física / 1373920/2014 / CAPES

Page generated in 0.0754 seconds