• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 37
  • 11
  • 9
  • 7
  • 3
  • Tagged with
  • 73
  • 73
  • 20
  • 13
  • 11
  • 11
  • 10
  • 10
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Nanopartículas magnéticas de cobalto metálico e ferrita de cobalto recobertas com ouro como materiais biocompatíveis visando aplicações em biomedicina / Magnetic nanoparticles of gold-coated cobalt and cobalt ferrite as biocompatible materials for biomedical applications

João Batista Souza Junior 24 May 2012 (has links)
Atualmente, as nanopartículas superparamagnéticas despertam enorme interesse científico devido sua grande variedade de aplicações em biomedicina, tanto na área de diagnóstico quanto no tratamento de enfermidades. Embora muitos materiais vem sendo estudados, os óxidos de ferro (magnetita e maghemita) apresentam maiores avanços nos estudos para aplicações em medicina. A preferência por óxidos de ferro se deve a baixa toxicidade destas partículas quando comparado as nanopartículas metálicas ou ligas. Entretanto, as nanopartículas destes óxidos possuem baixas magnetizações de saturação que diminuem ainda mais com as sucessivas etapas de recobrimento necessárias para conferir funcionalidade a estas partículas. Desse modo, há uma necessidade atual para o desenvolvimento de nanopartículas superparamagnéticas com elevada magnetização, baixa toxicidade e maior facilidade de funcionalização da sua superfície com biopolímeros e agentes funcionalizantes. Neste trabalho, nanopartículas superparamagnéticas de cobalto metálico e ferrita de cobalto foram sintetizadas e suas propriedades magnéticas foram comparadas com a magnetita. Nanopartículas de cobalto foram escolhidas, pois seu elevado comportamento ferromagnético é menor apenas que o ferro metálico, além do baixo custo de seus reagentes. As nanopartículas magnéticas foram sintetizadas pelos métodos de microemulsão e decomposição térmica (baseado no método poliol) e suas composições química, estrutural, tamanho e distribuição de tamanho foram devidamente determinadas. Além disso, as nanopartículas de cobalto metálico e ferrita de cobalto foram recobertas com ouro utilizando o método de crescimento mediado por semente. Os sistemas microemulsionados utilizados neste trabalho não foram eficientes nem na síntese de nanopartículas estáveis de cobalto metálico nem no seu esperado controle morfológico. Já o método de decomposição térmica resultou em um rigoroso controle de composição química, estrutural e morfológico para as diferentes nanopartículas sintetizadas. O recobrimento com ouro foi efetivo na proteção do núcleo magnético e adicionalmente conferiu estabilidade, baixa toxicidade e bifuncionalidade às nanopartículas magnéticas através do seu fenômeno de ressonância plasmônica de superfície o qual foi preservado na nanoestrutura core@shell. O comportamento superparamagnético das nanopartículas de cobalto metálico recobertas com ouro e sua elevada magnetização de saturação foram expressivamente intensificadas quando comparadas as nanopartículas de magnetita sem recobrimento. Portanto, as nanopartículas sintetizadas neste trabalho apresentam propriedades de superfície e magnéticas otimizadas demonstrando um bom potencial para aplicações em biomedicina como sensores bifuncionais óptico-magnético. / Superparamagnetic nanoparticles have been extensively studied because its wide range of biomedical applications in both diagnostic and therapy areas. Although different materials are currently investigated, superparamagnetic iron oxides nanoparticles (SPION), magnetite and maghemite, are the most extensively studied for applications in medicine. The lower toxicity profile of the SPION becomes the most attractive than metal or alloys nanoparticles. Nevertheless, iron oxides nanoparticles have low saturation magnetization, which further decreases due to successive coats to provide their functionality, leading the actual demand to develop superparamagnetic nanoparticles with high magnetization, low toxicity and easy surface functionalization with biocompatible agents. In this work, superparamagnetic nanoparticles of metallic cobalt and cobalt ferrite were synthesized and their magnetic properties were compared with the magnetite SPION. Cobalt nanoparticles were chosen because present high ferromagnetic behavior among chemical elements, second only to iron, besides their low cost. The magnetic nanoparticles were synthesized by both microemulsion and thermal decomposition (based on the polyol process) methods and their chemical composition, structure, size and size distribution were properly characterized. In addition, the ferrite and metallic cobalt nanoparticles were coated with gold by using the seed-mediated growth method. The used microemulsion systems were not efficient enough to synthesize stable metallic nanoparticles and to promote the expected morphological control even to ferrites. Instead, the thermal decomposition processes resulted in rigorous control of chemical compositional, structure and morphology in all different prepared samples. Au-coating process was effective to protect the magnetic nuclei also giving additional stability, low toxicity and a bifunctionality to the magnetic nanoparticle since their surface plasmon resonance phenomenon was preserved in the core@shell nanostructure. The superparamagnetic behavior of the Au-coated cobalt nanoparticle was preserved and their saturation magnetization was significantly increased compared with the naked magnetite SPION. In conclusion, the synthesized nanoparticles present enhanced magnetic and surface properties showing good potential to be used in biomedical application as bifunctional optical-magnetic sensor.
22

Zeolite nanocrystals for biomedical applications / Nanocristaux de zéolite pour des applications biomédicales

Goldyn, Kamila 16 November 2018 (has links)
Les propriétés des nanozéolithes, à savoir leur grande surface, leur stabilité hydrothermale et leur nature non toxique, permettent leur utilisation dans des applications prospectives, notamment la biomédecine (capteurs, administration de médicaments et de gaz) et la microbiologie (agents antibactériens). De nombreuses recherches ont été consacrées à l’étude de nouvelles applications biomédicales utilisant des matériaux zéolithiques, toutefois leur plein potentiel n’a toujours pas été pleinement dévoilé.Il est bien connu que la résistance croissante aux traitements établis de tumeurs et d’infections bactériennes par radiothérapie et antibiotiques est un problème de première importance. Par conséquent, le développement de nouvelles stratégies thérapeutiques pour résoudre ces problèmes est très démandé.L'objectif de cette recherche de doctorat est de synthétiser et de modifier post-synthétiquement des zéolithes nanométriques pour des applications biomédicales. Cela implique l'échange d'ions de zéolithe avec divers cations pour trouver celui qui convient le mieux aux applications souhaitées : le traitement antimicrobien, la réoxygénation des tissus tumoraux et l’administration de gaz.Dans cette étude, nous rapportons: (i) l'effet de la zéolithe FAU de type nanométrique modifiée au cuivre sur les bactéries de type ESKAPE (chapitre 3), (ii) l’utilisation de nanozéolithes contenant du métal comme outil d'oxygénation et de visualisation tissulaire (chapitre 4) et enfin (iii) l'utilisation de nanozéolithes FAU comme vecteur de l'oxyde nitrique et du dioxyde de carbone pour prévenir des maladies potentiellement létales (chapitre 5). / The properties of nanozeolites, namely, large surface area, hydrothermal stability and non-toxic nature, enable their utilization in forward-looking applications, including biomedicine (sensors, drug and gas delivery) and microbiology (antibacterial agents). Hence, a lot of research has been devoted to study the new biomedical applications using zeolitic materials, their full potential has still not been fully unveiled.It is well recognised that growing resistance to already established treatments of tumors and bacterial infections using radiotherapy and antibiotics is a distressing matter. Therefore, the development of new therapeutic strategies towards above issues is of great demand.The goal of this PhD research is to synthesise and post-synthetically modify nanosized zeolites for biomedical applications. This involves the ion-exchange of zeolite with various cations to find the most suitable one for desired applications in regards to antimicrobial treatment, tumour tissue reoxygenation and gas delivery.In this study, we report: (i) the effect of copper modified nanosized FAU type zeolite on ESKAPE type bacteria (Chapter 3), (ii) the metal containing nanozeolite as a tool for tissue oxygenation and visualisation using MRI (Chapter 4), and lastly (iii) the use of FAU nanozeolite as nitric oxide and carbon dioxide gas vector to prevent life threatening conditions (Chapter 5).
23

Cytotoxic Effects of Nickel Nanowires in Human Fibroblasts

Felix Servin, Laura P. 04 1900 (has links)
There is an increasing interest for the use of nanostructures as potential tools in areas that include biology and medicine, for applications spanning from cell separation to treatments of diseases. Magnetic nanoparticles (MNPs) have been the most widely studied and utilized nanostructures in biomedical applications. Despite their popularity, the regular shape of MNPs limits their potential for certain applications. Studies have shown that magnetic nanowires (MNWs), due to their high-­-aspect ratio and specific magnetic properties, might provide improved performance for some biomedical applications. As a consequence, MNWs have received increasing attention from researchers in the last years. However, as with any other nanostructure intended for biomedical applications, rigorous studies must be carried out to determine their potential toxicity and adverse effects before they can be successfully incorporated in clinical applications. This work attempts to elucidate the cytotoxic effects of nickel NWs (Ni NWs) in human fibroblasts by measuring cell viability under different parameters. Ni NWs of three different lengths (0.86 ± 0.02 μm, 1.1 ± 0.1 μm and 6.1 ± 0.6 μm) were fabricated by electrodeposition using porous aluminum oxide (PAO) membranes as templates. Energy dispersive X-­-Ray analysis (EDAX) and X-­-Ray diffraction (XRD) were used for the chemical characterization of the Ni NWs. Their physical characterization was done using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging. MTT assays were performed to assess cell viability of human fibroblasts in the presence of Ni NWs. NW length, NW/cell ratio and exposure time were changed throughout the experiments to elucidate their effects on cell viability. The results showed that NWs length has a strong effect on internalization and cytotoxicity. Smaller NWs showed higher toxicity levels at earlier times while longer NWs had stronger effects on cell viability at later times. NW/cell ratio did not seem to have a very strong effect at low concentrations. However, at high concentration (1000 NW/cell) significant loss of cell viability was observed, with the effects becoming stronger at later times. Other factors such as cell surface area, presence of oxide layer on NWs, and the cytotoxicity of Ni salts, were also studied and found to affect cell viability. For our knowledge, this is the first systematic study done in human fibroblasts wi-­-38 using ferromagnetic NWs; where the toxic effects of equivalent amounts of Ni in its salt and in its NW form are compared. It is also the first study to provide insights of the interaction between wi-­-38 cells and Ni NWs. The results of this study complement and enrich previous cytotoxicity studies of Ni NWs. This work aims at providing a more comprehensive understanding of the interaction between NWs and biological systems. Despite the advancements, further studies will be required to fully understand the factors affecting NW cytotoxicity. Only when we understand the underlying mechanisms, will we be able to design suitable nanostructures for biomedical applications.
24

DEVELOPING WAX-ON-PLASTIC PLATFORMS FOR BIOANALYTICAL AND BIOMEDICAL APPLICATIONS

Qamar, Ahmad Zaman 01 December 2019 (has links)
Developing microdevices on flexible material attracts scientific community to explore applications in different aspects of health and point of care diagnostics. Flexible substrates offer unique characteristics such as flexibility, stretchability, portability, low-cost, and simple fabrication. Fabrication of cost-effective paper-based analytical devices by wax printing has recently become popular using cellulose filter papers. Paper-based devices need higher temperature to form hydrophobic barrier across paper substrate, rely on large working channels (≥ 500 μm) for liquid handling, and exhibit lower efficiency (~50%) of sample mobility. Such limitations confine applications of wax-based fabrication. In this dissertation, we report printability, fidelity, and applications of wax micropatterns on polyethylene terephthalate-based substrate (PET), which is a a non-cellulosic, non-fibrous, and non-porous material. Resolution, sustainability against heat and biocompatibility was tested on wax micro-features. The patterned devices were explored for variety of applications.First, wax microwells on PET showed mouse embryonic stem cell (mESC) self-renewal or direct differentiation. Second, microfluidic flow was demonstrated on wax printed microchannels on PET which was used to develop distance-based assay. Third, fluidic properties of trinucleotide repeat sequences were investigated on wax microchannels. Fourth, multilayer wax-on-plastic device was fabricated using wax printing with hand painting of conductive materials for electrochemical immunosensing.
25

Nanocomposite Coatings for Biomedical Applications

Sun, Feng 03 1900 (has links)
<p> New electrophoretic deposition methods for the fabrication of advanced organic-inorganic composite coatings on metallic substrates for biomedical applications have been developed. In the proposed methods, chitosan was used as a matrix for the fabrication of multilayer and functional graded chitosan- hydroxyapatite (HA) coatings. The HA particles showed preferred orientation of c-axis parallel to the layer surface, which is similar to the bone structure. Electrochemical studies showed that the obtained coatings provided corrosion protection of the metallic substrates, such as stainless steel and Nitinol.</p> <p> The feasibility of co-deposition of chitosan and heparin has been demonstrated. Composite chitosan-heparin layers were used for the surface modification of chitosan-HA coatings. Obtained results paved the way for the electrophoretic fabrication of novel coatings for biomedical implants with improved blood compatibility.</p> <p> The feasibility of co-deposition of hyaluronic acid and HA has also been demonstrated. The co-deposition of hyaluronic acid and HA resulted in the fabrication of novel nanocomposite films by electrodeposition. The chemical composition, microstructure, corrosion protection, and other functional properties of the nanocomposites have been investigated. Co-deposition of hyaluronic acid and multiwalled carbon nanotubes has been studied by TGA/DT A and SEM studies.</p> <p> The feasibility of deposition of novel composites based on alginic acid has been demonstrated. New electrochemical strategies were used for the fabrication of alginic acid-HA, alginic acid-heparin and alginic acid -hyaluronic acid nanocomposites. The composition of these nanocomposite coatings can be varied by variation in bath composition for EPD.</p> <p> The electrochemical mechanisms for the fabrication of all these advanced organic-inorganic composite coatings have been developed.</p> / Thesis / Master of Applied Science (MASc)
26

Tailored Architectures of Ammonium Ionenes

Tamami, Mana 28 December 2009 (has links)
The synthesis and characterization of a variety of ammonium ionenes from water-soluble coatings to high-performance elastomers are discussed. Water-soluble random copolymer ionenes were synthesized using the Menshutkin reaction from 1,12-dibromododecane, N,N,Nâ ²,Nâ ²-tetramethyl-1,6-hexanediamine, and 1,12-bis(N,N-dimethylamino)dodecane. The absolute molecular weights were determined for the first time using a multiangle laser light scattering detector in aqueous size exclusion chromatography and the weight-average molecular weights of these ionenes were in the range of 17,000-20,000 g/mol. Charge density increased with increasing molar ratio of N,N,Nâ ²,Nâ ²-tetramethyl-1,6-hexanediamine and the glass transition temperature (Tg) increased from 69 °C to 90 °C as the charge density increased. Small angle x-ray scattering (SAXS) showed isotropic scattering patterns for these ionenes. A limited study on cytotoxicity of these ionenes showed no direct correlation between charge density and cell viability for human brain microvascular endothelial cell line. A series of low hard segment (HS) content, poly(propylene glycol) (PPG)-based ammonium ionenes were synthesized using a Menshutkin reaction from bromine end-capped PPG oligomers (prepared using acid-chloride reactions) and N,N,Nâ ²,Nâ ²-tetramethyl-1,6-hexanediamine. Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, titration analyses, and ¹H NMR spectroscopy, confirmed the difunctionality of bromine end-capped PPG oligomers. Thermal analysis revealed Tg's of -60 °C, comparable to pure PPG, using differential scanning calorimetery (DSC), dynamic mechanical analysis (DMA) confirming microphase separation, and an onset of degradation (Td) at 240 °C. Synthesis of a series of random block copolymer ammonium ionenes with an aliphatic 1,12-dibromododecane as part of the hard segment (33 wt% HS) enhanced film formation and supported microphase separation property. The Td and Tg did not change compared to PPG-ionenes with lower HS content. DMA and tensile testing demonstrated the influence of soft segment (SS) molecular weight and hard segment (HS) content on the mechanical properties of segmented ammonium ionenes. DMA showed the onset of flow, ranging from 100-140 ºC for 1K and 2K g/mol PPG-based ionenes respectively. SAXS revealed a Bragg distance scaled with soft segment molecular weight and ranged from 6.6 to 23.4 nm for 1K to 4K g/mol PPG-based ionenes, respectively. An investigation of the salt-responsive solubility property of random block copolymer PPG-ionenes revealed a dependence on PPG molecular weight. The 1K g/mol PPG-based ionenes with a hydrophilic (HPL)/hydrophobic (HPB) value ranging from one to three showed solubility in both water and one wt% NaCl aqueous solutions. The 2K g/mol PPG-based ionenes containing HPL/HPB value of two to 15 showed cloudy dispersions in water and one wt% NaCl solutions. The 4K g/mol PPG-based ionenes possessed the salt-responsive character; 4K g/mol PPG-based ionenes with HPL/HPB values of one to 12 showed milky dispersions in water, suspended particles in one wt% NaCl solutions and film precipitation at a HPL/HPB molar ratio of 19. / Master of Science
27

Fullerene: biomedical engineers get to revisit an old friend

Goodarzi, S., Da Ros, T., Conde, J., Sefat, Farshid, Mozafari, M. 24 April 2017 (has links)
Yes / In 1985, the serendipitous discovery of fullerene triggered the research of carbon structures into the world of symmetric nanomaterials. Consequently, Robert F. Curl, Harold W. Kroto and Richard E. Smalley were awarded the Noble prize in chemistry for their discovery of the buckminsterfullerene (C60 with a cage-like fused-ring structure). Fullerene, as the first symmetric nanostructure in carbon nanomaterials family, opened up new perspectives in nanomaterials field leading to discovery and research on other symmetric carbon nanomaterials like carbon nanotubes and two-dimensional graphene which put fullerenes in the shade, while fullerene as the most symmetrical molecule in the world with incredible properties deserves more attention in nanomaterials studies. Buckyball with its unique structure consisting of sp2 carbons which form a high symmetric cage with different sizes (C60, C70 and so on); however, the most abundant among them is C60 which possesses 60 carbon atoms. The combination of unique properties of this molecule extends its applications in divergent areas of science, especially those related to biomedical engineering. This review aims to be a comprehensive review with a broad interest to the biomedical engineering community, being a substantial overview of the most recent advances on fullerenes in biomedical applications that have not been exhaustively and critically reviewed in the past few years.
28

The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties

Shahbazi, M-A., Faghfouri, L., Ferreira, M.P.A., Figueiredo, P., Maleki, H., Sefat, Farshid, Hirvonen, J., Santos, H.A. 24 April 2020 (has links)
Yes / Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented. / M.-A. Shahbazi acknowledges financial support from the Academy of Finland (grant no. 317316). P. Figueiredo acknowledges the Finnish Cultural Foundation for its financial support (decision no. 00190246). H. A. Santos acknowledges financial support from the HiLIFE Research Funds, the Sigrid Juse´lius Foundation, and the Academy of Finland (grant no. 317042). / Research Development Fund Publication Prize Award winner, Jan 2020.
29

Síntese e caracterização de nanomateriais superparamagnéticos do tipo core-shell para aplicação em catálise e biomedicina / Synthesis and characterization of core-shell superparamagnetic nanomaterials for biomedical and catalytic applications

Beck Júnior, Watson 31 March 2016 (has links)
As diversas aplicações tecnológicas de nanopartículas magnéticas (NPM) vêm intensificando o interesse por materiais com propriedades magnéticas diferenciadas, como magnetização de saturação (MS) intensificada e comportamento superparamagnético. Embora MNP metálicas de Fe, Co e bimetálicas de FeCo e FePt possuam altos valores de MS, sua baixa estabilidade química dificulta aplicações em escala nanométrica. Neste trabalho foram sintetizadas NPM de Fe, Co, FeCo e FePt com alta estabilidade química e rigoroso controle morfológico. NPM de óxido metálicos (Fe e Co) também foram obtidas. Dois métodos de síntese foram empregados. Usando método baseado em sistemas nanoheterogêneos (sistemas micelares ou de microemulsão inversa), foram sintetizadas NPM de Fe3O4 e Co metálico. Foram empregados surfactantes cátion-substituídos: dodecil sulfato de ferro(III) (FeDS) e dodecil sulfato de cobalto(II) (CoDS). Para a síntese das NPM, foram estudados e determinados a concentração micelar crítica do FeDS em 1-octanol (cmc = 0,90 mmol L-1) e o diagrama de fases pseudoternário para o sistema n-heptano/CoDS/n-butanol/H2O. NPM esferoidais de magnetita com3,4 nm de diâmetro e comportamento quase-paramagnético foram obtidas usando sistemas micelares de FeDS em 1-octanol. Já as NPM de Co obtidas via microemulsão inversa, apesar da larga distribuição de tamanho e baixa MS, são quimicamente estáveis e superparamagnéticas. O segundo método é baseado na decomposição térmica de complexos metálicos, pelo qual foram preparadas NPM esféricas de FePt e de óxidos metálicos (Fe3O4, FeXO1-X, (Co,Fe)XO1-X e CoFe2O4) com morfologia controlada e estabilidade química. O método não mostrou a mesma efetividade na síntese de NPM de FeAg e FeCo: a liga FeAg não foi obtida enquanto que NPM de FeCo com estabilidade química foram obtidas sem controle morfológico. NPM de Fe e FeCo foram preparadas a partir da redução térmica de NPM de Fe3O4 e CoFe2O4, as quais foram previamente recobertas com sílica. A sílica previne a sinterização inter-partículas, além de proporcionar caráter hidrofílico e biocompatibilidade ao material. As amostras reduzidas apresentaram aumento dos valores de MS (entre 21,3 e 163,9%), o qual é diretamente proporcional às dimensões das NPM. O recobrimento com sílica foi realizado via hidrólise de tetraetilortosilicato (TEOS) em sistema de microemulsão inversa. A espessura da camada de sílica foi controlada variando-se o tempo de reação e as concentrações de TEOS e de NPM, sendo então proposto um mecanismo do processo de recobrimento. Algumas amostras receberam um recobrimento adicional de TiO2 na fase anatase, para o qual foi empregado etilenoglicol como solvente e ligante para formação de glicolato de Ti como precursor. A espessura da camada de TiO2 (2-12 nm) é controlada variando as quantidades relativas entre NPM e o precursor de Ti. Ensaios de hipertermia magnética foram realizados para as amostras recobertas com sílica. Ensaios de hipertermia magnéticas mostram grande aumento da taxa de aquecimento das amostras após a redução térmica, mesmo para dispersões diluídas de NPM (0,6 a 4,5 mg mL-1). Taxas de aquecimento entre 0,3 e 3,0oC min-1 e SAR entre 37,2 e 96,3 W g-1. foram obtidos. A atividade fotocatalítica das amostras recobertas foram próximas à da fase anatase pura, com a vantagem de possuir um núcleo magnético que permite a recuperação do catalisador pela simples aplicação de campos magnéticos externos. Os resultados preliminares dos ensaios de hipertermia magnética e fotocatálise indicam um forte potencial dos materiais aqui relatados para aplicações em biomedicina e em fotocatálise. / The most diverse technological applications of magnetic nanoparticles (MNP) have intensifiedthe interest for materials with different magnetic properties such as enhanced saturationmagnetization (MS) and superparamagnetic behavior. Despite the high MS values of metalparticles of Fe, Co, FeCo and FePt, their low chemical stability hinders most applications at thenanoscale. This thesis reports the synthesis of metallic Fe and Co and bimetallic FeCo and FePtMNP with high chemical stability and strict morphological control. MNP of iron oxide and mixediron-cobalt oxide were also synthesized. Two methods were employed. The first method, basedon nanoheterogeneous systems (micellar or reverse microemulsion systems), was used toprepare magnetite and metallic Co NPM. The method applies cation-substituted surfactants:iron(III) dodecyl sulfate iron (FeDS) and cobalt(II) dodecyl sulfate (CoDS). Before the MNPsyntheses, it were studied e determined the critical micelle concentration of FeDS in 1-octanol(cmc = 0.90 mmol L-1) and the pseudo-ternary phase diagram of n-heptane/CoDS/nbutanol/H2O. Spheroidal MNP of magnetite with 3.4 nm in diameter and quasi-paramagneticbehavior were prepared in octanolic FeDS micellar systems. Despite their broad sizedistribution and low MS, metallic Co MNP were produced in reverse microemulsions withchemical stability and superparamagnetic behavior. The second synthesis method, based onthermal decomposition of metal complexes, was employed to prepare spherical FePt and metaloxides (Fe3O4, FeXO1-X, (Co, Fe)XO1-X and CoFe2O4) MNP. Strict morphological control and highchemical stability were reached. Such method does not show the same effectiveness tosynthesize FeAg and FeCo MNP: the FeAg bimetallic alloy was not obtained while FeCo MNPwith chemical stability and compositional control were prepared with no morphological control.Fe and FeCo MNP were produced by thermal reduction of silica-coated Fe3O4 and CoFe2O4 MPN. The coating, beyond to prevent inter-particle sintering, provides biocompatibility andhydrophilic character. The reduced samples showed a significant increase in MS values(between 21.3 and 163.9%), which is directly proportional to MNP size. The silica coating wasaccomplished by tetraethylorthosilicate (TEOS) hydrolysis in reverse microemulsions. Thethickness of the silica layer is controlled by varying the reaction time and concentration of TEOSand NPM. The observations during coating process allowed to propose its probable mechanism.An additional coating of TiO2 (anatase phase) was performed onto silica layer for somesamples. Anatase coating was achieved by using ethylene glycol as both solvent and ligand toproduce an intermediate complex Ti precursor. The variation of the relative amounts of NPMand the Ti precursor allows to control the thickness of the anatase layer between 2 and 12 nm. Assays of magnetic hyperthermia were performed for silica-coated samples. The heating rate of the reduced samples increases after thermal reduction, even for dilute MNP dispersions (0.6 to4.5 mg mL-1). Heating rates between 0.3 and 3.0o C min-1 and SAR in the range of 37.2 96.3 Wg-1 were obtained. The photocatalytic activities of pure anatase particles and TiO2 -coated MNPwere close, but the magnetic samples has the advantage of being recovered from reactionmedia by applying the external magnetic fields. The preliminary results of magnetichyperthermia and photocatalysis assays indicate such materials have strong potential forapplications in biomedicine and photocatalysis.
30

Secure communications in wireless networks for biomedical EEG sensor networks applications. / Sécurisation des communications pour les réseaux de capteurs sans fil, application aux réseaux biomédicaux de type EEG.

Saleh, Mohammad 07 November 2018 (has links)
Le cadre général de la thèse concerne les réseaux de capteurs et la sécurisation des communications sans fil pour la mise en œuvre de systèmes fiables de surveillance orienté santé. Plus précisément, ce travail de thèse présente un nouveau système de surveillance biomédical à base de réseau de capteurs sans fil, pour la mesure de l'activité électrique du cerveau. Un réseau de capteurs sans fil de type EEG (électroencéphalogramme) permet de surveiller les ondes cérébrales spontanées, y compris les ondes normales et anormales, des patients souffrant de différents types d'épilepsie. Un capteur sans fil enregistre les signaux du patient (via le cuir chevelu) et filtre ces signaux et leurs données en parallèle selon un traitement approprié des ondes cérébrales. Il est dès lors possible de prédire la gravité d'une attaque épileptique à venir. Une première approche est proposée pour analyser les anomalies des ondes cérébrales et déclencher des alertes le cas échéant. De tels systèmes peuvent permettre de sauver de nombreux patients en prédisant l’arrivée les crises avant qu'elles ne surviennent et éviter ainsi les accidents et les comportements à risque lors d'une crise d'épilepsie. De plus, l’approche peut être utiliser pour d'autres mesures de diagnostic médical. Une autre approche basé sur l’apprentissage pour la prédiction en utilisant les réseaux de neurones de type FFNN (Feed Forward Neural Network ) est également présentée. Par ailleurs, Les approches de prédiction, exploitent la norme IEEE802.11n pour la transmission des données avec un protocole de confidentialité pour la sécurisation des communications. La mise en œuvre de la sécurité peut réduire considérablement le temps de la prédiction et retarder les signaux d’alerte des crises. Les mesures effectuées permettent la calibration des algorithmes de prédiction pour tenir compte des délais introduits par la sécurisation des communications. / The general framework of the thesis concerns sensor networks and the privacy protocols for wireless communications in the implementation of reliable healthcare systems. More precisely, it presents a novel biomedical wireless sensor Network monitoring system, as a predictor and advance sensitive portable electroencephalogram (EEG). The EEG wireless sensor network proposed to monitor spontaneous brain waves, including normal and abnormal waves, for the patients suffering from different types of epilepsy. The biomedical epilepsy wireless sensor Network monitoring system (WSN-EEG) read’s signals from a wireless sensor network on the patient scalp, and filter these signals to run parallel data processing for the brain waves. However, the predicting procedure for the severity of the forthcoming epileptic attack based on, a proposed mathematical model, which analyses the abnormality in the brain waves and alerts by giving signals for the patient. This method can save many patients by predicting the seizure before it occurs and helps them from different injuries and risky behavior arising during epilepsy attack. In addition, the proposed approaches can use the patient data for further medical diagnosis measures. Another approach is proposed as a learning-based approach for prediction using Feed Forward Neural Network (FFNN) for the alert system. The research used the IEEE802.11n as a communication method for the wireless sensor networks and measure the IEEE802.11n security performances as privacy protocol for data transmission of the proposed systems. The measurements indicated the calibration of the prediction algorithms to take account of the delays introduced by the security of the communications in the data transmission and seizure prediction which might significantly reduce prediction time and delay the alert signals.

Page generated in 0.1327 seconds