Spelling suggestions: "subject:"bioprinter"" "subject:"riboprinter""
1 |
Zellbiologische Evaluation von Thiol-En vernetzter Gelatine im volumetrischen Biodruck anhand von Fibroblasten und Vergleich mit den etablierten Hydrogelsystemen Alginat- Gelatine und GelMA / Cell biological evaluation of thiol-ene cross-linked gelatin in volumetric bioprinting using fibroblasts and comparison with the established hydrogel systems alginate gelatin and GelMALöffler, Maxi January 2025 (has links) (PDF)
Die Entwicklung und Erforschung von Materialien, die biologische Gewebefunktionen
erfüllen und geschädigtes Gewebe ersetzen können, steht im Fokus der Biofabrikation.
Die steigenden Anforderungen und somit ein Mangel an geeigneten Biotinten
erschweren jedoch den Fortschritt in diesem Bereich. Durch die Nachbildung einer
natürlichen extrazellulären Matrix soll den Zellen in einem Hydrogel eine mechanisch
unterstützende 3D-Umgebung geboten werden, um ein Zellüberleben und eine
Zellproliferation zu erreichen. Mittels additiver Fertigungstechniken können so 3DKonstrukte
hergestellt werden.
Das Ziel dieser Arbeit war die zellbiologische Evaluation verschiedener
Hydrogelsysteme und das Austesten dieser in einem volumetrischen 3D-Biodrucker.
Dabei wurden die Hydrogelsysteme Alg-Gel, GelMA und GelAGE miteinander
verglichen. Anhand von eingebetteten Mausfibroblasten L929 und NIH-3T3 wurde das
Zellüberleben nach einer in-vitro Kultivierung von 7 Tagen mit verschiedenen
Testverfahren evaluiert. Mittels CCK-8-Kit konnte die Zellaktivität und Zellproliferation
untersucht werden, während der PicoGreen-Assay den absoluten DNA-Gehalt einer
Probe bestimmen konnte. Zusätzlich wurde mittels Live/Dead-Assay das Zellüberleben
an den verschiedenen Versuchstagen analysiert und die Zellverteilung und Morphologie
anhand der Phalloidinfärbung genauer untersucht.
In den Vorversuchen wurde das Zellüberleben von L929 und NIH-3T3- Zellen in
gegossenen Alg-Gel-Hydrogelen getestet. Dabei konnte eine gute Zytokompatibilität
des etablierten Hydrogelsystems festgestellt werden. Es wurden außerdem
reproduzierbare Ergebnisse am FMZ in Würzburg erreicht. Um die beiden
Hydrogelsysteme GelMA und GelAGE zu vergleichen, wurden diese zum einen in
Förmchen gegossen und zum anderen mit einem 3D-Biodrucker hergestellt. Die
Ergebnisse der metabolischen Stoffwechselaktivität waren gut. Es konnte zudem
herausgefunden werden, dass sich die Zellen vor allem auf der Hydrogeloberfläche in
einem gestreckten Zellnetzwerk ansiedelten, während im Gelinneren nur wenige Zellen
diese Morphologie erreichten.
Insgesamt stellt das Hydrogelsystem GelAGE eine neue und vielversprechende
Bioplattform dar, das eine kosteneffiziente und reproduzierbare Herstellung von
Hydrogelen ermöglicht und noch weiter erforscht werden sollte. / The development and research of materials that can fulfill biological tissue functions and replace damaged tissue is the focus of biofabrication. However, increasing requirements and the resulting lack of suitable bioinks are hampering progress in this area. By replicating a natural extracellular matrix, the aim is to provide the cells in a hydrogel with a mechanically supportive 3D environment in order to achieve cell survival and proliferation. Using additive manufacturing techniques, 3D constructs can be produced in this way. The aim of this work was the cell biological evaluation of different hydrogel systems and the testing of these in a volumetric 3D bioprinter. The hydrogel systems Alg-Gel, GelMA and GelAGE were compared with each other. Using embedded mouse fibroblasts L929 and NIH-3T3, cell survival was evaluated after 7 days of in vitro cultivation using various test methods. The CCK-8 kit was used to examine cell activity and proliferation, while the PicoGreen assay was used to determine the absolute DNA content of a sample. In addition, the cell survival on the different test days was analyzed using a live/dead assay and the cell distribution and morphology were examined in more detail using phalloidin staining. In the preliminary experiments, the cell survival of L929 and NIH-3T3 cells was tested in cast Alg-gel hydrogels. Good cytocompatibility of the established hydrogel system was found. Reproducible results were also achieved at the FMZ in Würzburg. In order to compare the two hydrogel systems GelMA and GelAGE, they were cast into molds and produced using a 3D bioprinter. The results of the metabolic activity were good. It was also found that the cells mainly colonized the hydrogel surface in an elongated cell network, while only a few cells achieved this morphology in the gel interior. Overall, the GelAGE hydrogel system represents a new and promising bioplatform that enables the cost-efficient and reproducible production of hydrogels and should be investigated further.
|
2 |
3D Bioprinting : Future Challenges and Entrepreneurial Possibilities of a Growing TechnologyNilsson, Olivia January 2023 (has links)
Bioprinting is one of the most promising technologies for future healthcare as it may benefit the repairing of wounds and injuries, disease modeling and development, transplantation of organs and reduce animal testing. This thesis aim to investigate this industry further, as there is no excessive literature on how to handle the innovation in regards to entrepreneurial and biotechnological knowledge. Hence, a research gap can be spotted and the purpose of the conducted research questions should contribute to this gap. In order to fully understand the bioprinting industry, an outline of the technology is made as part of the research. In addition to this, secondary data for patents, market valuation and annual growth rates are collected to support arguments from previous literature. Also, interviews are conducted to gather specific knowledge. As a result, bioprinting may be presented as a disruptive innovation in an uncertain market, which places certain demands on companies to act more in line with the complexity of the technology. Such companies must think more strategically and design more complex and long-term strategies. The patent data shows that there has been a decline in the technological development as patent applications have decreased significantly. Even though the technology (regarding the patents) has started to slowly decline, there is still hope for some technological improvements to come. It can be concluded that developments in bioink, scaffolds, expansion of cells and diffusion is expected, and that the use of bioprinting is increasing and will most likely continue to do so.
|
3 |
Design and implementation of a signaling system for a novel light-baseed bioprinter : Design och implementering av ett signalsystem för en ny ljusbaserad bioprinterAbdalla, Osman January 2023 (has links)
A 3D bioprinter employing light-based technology has been designed and constructed in an EU-funded research initiative known as BRIGHTER (Bioprinting by Light-Sheet Lithography). This initiative is a collaborative effort between institutions and companies and aims to develop a technique for efficient and accurate production of engineered tissue. Presently, the bioprinter’s function is limited to 2D printing, with the lack of 3D printing capabilities. The problem addressed is the integration of two separate electronic systems within the bioprinter to control the laser beam’s trajectory for 3D printing. The goal of the project is to create functional software and simulation tools to control the hardware modules in a precise and synchronized manner, thereby enabling 3D printing. The outcome manifests as a software prototype, which successfully facilitates intercommunication between the two electronic subsystems within the bioprinter, thereby enabling further progress on the bioprinter with 3D printing available. Nevertheless, the prototype requires thorough testing to determine its optimal operational efficiency in terms of timing the movements for the various hardware modules. / En 3D-bioprinter som använder ljusbaserad teknik har designats och konstruerats i ett EU-finansierat forskningsinitiativ som kallas BRIGHTER (Bioprinting by Light-Sheet Lithography). Detta initiativ är ett samarbete mellan institutioner och företag och syftar till att utveckla en teknik för effektiv och korrekt produktion av konstruerad vävnad. I dagsläget har bioprintern inte möjligheten för 3D-utskrift, utan är begränsad till 2D-utskrift. Problemet som åtgärdas är integrationen av två separata elektroniska system inom bioprintern för att styra laserstrålens bana för 3D-utskrift. Målet med projektet är att skapa funktionell mjukvara och simuleringsverktyg för att styra hårdvarumodulerna på ett exakt och synkroniserat sätt och därigenom möjliggöra 3D-utskrift. Resultatet av examensarbetet är en mjukvaruprototyp, som framgångsrikt möjliggör interkommunikation mellan de två elektroniska systemen inom bioprintern och därigenom öppnar möjligheten för vidare arbete med 3D-utskrift tillgängligt. Prototypen kräver dock noggranna tester för att fastställa dess optimala operativa effektivitet när det gäller koordinationen av hårdvarumodulernas rörelser.
|
Page generated in 0.0529 seconds