• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 443
  • 106
  • 54
  • 48
  • 10
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 7
  • 4
  • 3
  • Tagged with
  • 884
  • 92
  • 85
  • 72
  • 70
  • 67
  • 64
  • 56
  • 51
  • 51
  • 50
  • 44
  • 43
  • 42
  • 41
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Organic/inorganic hybrid nanostructures for chemical plasmonic sensors

Chang, Sehoon 30 March 2011 (has links)
The work presented in this dissertation suggests novel design of chemical plasmonic sensors which have been developed based on Localized Surface Plasmon Resonance (LSPR), and Surface-enhanced Raman scattering (SERS) phenomena. The goal of the study is to understand the SERS phenomena for 3D hybrid (organic/inorganic) templates and to design of the templates for trace-level detection of selected chemical analytes relevant to liquid explosives and hazardous chemicals. The key design criteria for the development of the SERS templates are utilizing selective polymeric nanocoatings within cylindrical nanopores for promoting selective adsorption of chemical analyte molecules, maximizing specific surface area, and optimizing concentration of hot spots with efficient light interaction inside nanochannels. The organic/inorganic hybrid templates are optimized through a comprehensive understanding of the LSPR properties of the gold nanoparticles, gold nanorods, interaction of light with highly porous alumina template, and the choice of physical and chemical attributes of the selective coating. Furthermore, novel method to assemble silver nanoparticles in 3D as the active SERS-active substrate has been demonstrated by uniform, in situ growth of silver nanoparticles from electroless deposited silver seeds excluding any adhesive polymer layer on template. This approach can be the optimal for SERS sensing applications because it is not necessary to separate the Raman bands of the polyelectrolyte binding layer from those of the desired analyte. The fabrication method is an efficient, simple and fast way to assemble nanoparticles into 3D nanostructures. Addressable Raman markers from silver nanowire crossbars with silver nanoparticles are also introduced and studied. Assembly of silver nanowire crossbar structure is achieved by simple, double-step capillary transfer lithography. The on/off SERS properties can be observed on silver nanowire crossbars with silver nanoparticles depending on the exact location and orientation of decorated silver nanoparticles nearby silver nanowire crossbars. As an alternative approach for the template-assisted nanostructure design, porous alumina membrane (PAM) can be utilized as a sacrificial template for the fabrication of the nanotube structure. The study seeks to investigate the design aspects of polymeric/inorganic hybrid nanotube structures with plasmonic properties, which can be dynamically tuned by external stimuli such as pH. This research suggests several different organic/inorganic nanostructure assemblies by various template-assisted techniques. The polymeric/inorganic hybrid nanostructures including SERS property, pH responsive characteristics, and large surface area will enable us to understand and design the novel chemical plasmonic sensors.
522

Liquid-phase operation of mems resonators for biochemical sensing in point of care and embedded applications

Beardslee, Luke Armitage 08 July 2011 (has links)
The purpose of this work is the development of MEMS-based resonant sensors for liquid-phase biochemical sensing applications. Specifically, the sensors developed here are aimed at embedded or point-of-sampling applications: (1) when there is not enough time to send a sample to a lab for analysis, (2) in resource-poor settings, (3) when collecting analyte and shipping it to a lab would damage the sample, or (4) for in-situ monitoring. To this end, a bulk micromachined resonant cantilever sensor and a surface micromachined sensor based on the spring-softening effect are investigated as transducer elements. The developed cantilever resonators are operated in an in-plane vibration mode to reduce fluid damping and mass loading by the surrounding fluid. The surface of the resonator is either coated with a chemically sensitive polymer film for chemical sensing or with a layer of protein or antibody for biosensor testing. Chemical tests for sensing volatile organic compounds using polymer-coated in-plane resonators in the liquid-phase give estimated limits of detection below 100 ppb. In addition, biosensor tests for the detection of anti-IgG yield estimated limits of detection around 100 ng/ml. In an attempt to further improve sensor reliability and to further lower the limits of detection, a second sensing concept has been investigated. The presented sensing scheme is capacitive with a resonator acting as an analog-to-digital converter. The resonator and the sensing capacitors are coupled via the spring softening effect. Through this mechanism a change in capacitance causes a shift in resonant frequency. Extensive device modeling has been performed and a process has been developed allowing for fabrication and on-chip packaging of these sensor structures. Initial mechanical characterization data show that the resonators do in fact vibrate.
523

Quorum sensing Rezeptorprotein LuxP – gentechnisches Design von LuxP-Derivaten zur Anwendung in der Biosensorik

Ihle, Karolina 17 January 2011 (has links) (PDF)
Als Quorum sensing (QS) wird die Kommunikation zwischen Bakterien bezeichnet. Diese basiert auf kleinen Signalmolekülen, die Autoinducer (AI) genannt werden. Durch QS werden von Bakterien Verhaltensweisen wie Fähigkeit zur Symbiose, Virulenz, Produktion von Antibiotika und Bildung von Biofilmen reguliert. Die Kommunikation kann innerhalb einer Spezies (Intraspezies-Kommunikation) oder mehreren Spezies (Interspezies-Kommunikation) erfolgen. Gram-negative Bakterien kommunizieren über acetylierte Homoserinlaktone (AHL), Gram-positive Bakterien dagegen benutzen modifizierte Oligopeptide als Autoinducer. Für die Interspezies-Kommunikation dient der Autoinducer-2 (AI-2). AI-2 entsteht auf dem Weg der spontanen Zyklisierung von 4,5-Dihydroxy-2,3-Pentadion (DPD), der von LuxS synthetisiert wird. Die Universalität des AI-2 als Signalmoleküls basiert auf dessen chemischen Eigenschaften. Als biologisch aktive Formen von DPD gelten S-THMF-Borat (bei marinen Bakterien wie Vibrio harveyi) und R-THMF (z.B. bei Enterobakterien wie Escherichia coli oder Salmonella enterica Serovar Typhimurium). AI-2 wird bei allen Bakterien von einem periplasmatischen Rezeptor gebunden. S-THMF-Borat bindet spezifisch an den Rezeptor LuxP, R-THMF dagegen an den Rezeptor LsrR. Durch die Anbindung des AI-2 verändert sich die Konformation des Rezeptors, was als Signal über weitere Proteine in die Zelle weitergeleitet wird. In E. coli ist die Expression des Operons lsrACDBFGE von AI-2 abhängig. Der lsr-Promotor wird von dem Repressor LuxR, Phospo-AI-2 sowie dem cAMP-CRP-Komplex reguliert. In dieser Arbeit wurden die molekularbiologische Grundlagen zur Entwicklung eines AI-2-Biosensors gelegt. Es wurden mehrere Fusionskonstrukte des V. harveyi AI-2 Rezeptors LuxP sowie dessen Derivate mit veränderter Affinität zur AI-2 kreiert, in E. coli exprimiert und aufgereinigt. Auch Rezeptorproteine von Vibrio fischeri sowie E. coli konnten erfolgreich exprimiert werden. Die Expression der Proteine erfolgte in E. coli luxS- Deletionsstämmen, die hierfür konstruiert worden sind. Die AI-2-Rezeptorproteine werden in E. coli vorwiegend in Form von inclusion bodys exprimiert. Nur ein Teil des Proteins ist löslich und kann für die Aufreinigung unter nativen Bedingungen verwendet werden. Auf der Basis von E. coli luxS- Deletionsstämmen wurde ein Bioassay entwickelt, der für die Detektion von AI-2 verwendet werden kann. Hierfür wurden mehrere Reporterplasmide konstruiert, in denen das rot fluoreszierende Protein DsRed unter die Kontrolle des lsr-Promotors von E. coli kloniert wurden. Dabei konnte unter Verwendung einer dieser Reporterplasmide (pBRDsRed) sowie des luxS-Deletionsstammes KIB1 Bioassay-Bedingungen etabliert werden, die einen Nachweis von AI-2 ermöglichen. Die für den Assay benötigten AI-2-Moleküle wurden in vitro mithilfe der Enzyme Pfs und LuxS und S-Adenosyl-Homocystein (SAH) als Substrat hergestellt. Der entwickelte AI-2-Bioassay wurde für die Bestimmung der Bindeaktivität der V. harveyi LuxP-Derivate verwendet. Die resultierenden Ergebnisse wiesen eine hohe Reproduzierbarkeit (1,2 bis 11,3 % Standartabweichung) auf.
524

Development of smart functional surfaces for biosensor applications

Balasubramanian, Shankar Ganesh Sokkalinga, Simonian, Aleksandr L., January 2008 (has links) (PDF)
Thesis (Ph. D.)--Auburn University, 2008. / Abstract. Vita. The following patent resulted from the dissertation research: Davis, V., Simonian, A.L., Nepal, D., Balasubramanian, S, "Preparation of Precisely Controlled Thin Film Nanocomposites of Carbon Nanotubes and Biomaterials", U.S. Provisional Patent Application No. 61/000,938, filed on 30 October 2007. The following peer-reviewed publications resulted from the dissertation research: Dhriti Nepal, Shankar Balasubramanian, Aleksandr Simonian, and Virginia Davis, "Mechanically Strong Antibacterial Thin Film Based on Single-Walled Carbon Nanotubes Armored with Biopolymers", Nano Letters ASAP article, May 2008 (# equal contribution) -- Shankar Balasubramanian, Iryna B. Sorokulova, Vitaly J. Vodyanoy, and Aleksandr L. Simonian, "Lytic Phage as a Specific and Selective Probe For Detection of Staphylococcus Aureus: A Surface Plasmon Resonance Spectroscopic Study", Biosensors and Bioelectronics, 2007, 22, 948-955 -- Shankar Balasubramanian, Alexander Revzin, Aleksandr Simonian, "Electrochemical Desorption of Proteins from Gold Electrode Surface", Electroanalysis, 2006, 18, 1885-1892 (Invited article) -- Vishwaprakash Nanduri, Shankar Balasubramanian, Srinivas Sista, Vitaly J. Vodyanoy, and Aleksandr L. Simonian, "Highly Sensitive Phage-based Biosensor for the Detection of ß-galactosidase", Analytica Chimica Acta, 2007, 589, 166- 172 -- H. Luckarift, Shankar Balasubramanian, S. Paliwal, G. Johnson and A. Simonian, "Enzyme-Encapsulated Silica Monolayers For Rapid Functionalization of a Gold Surface", Colloids and Surfaces B: Biointerfaces, 2007, 58, 28-33 (Invited article) -- Dong Wei, Omar Oyarzabal, Tung-Shi Huang, Shankar Balasubramanian, Srinivas Sista, Aleksandr Simonian, "Development of Surface Plasmon Resonance Biosensor For The Identification of Campylobacter jejuni", Journal of Microbiological Methods, 2007, 69, 78-85. The following conferences presentations resulted from the dissertation research: Covalent Immobilization of Organophosphorus Hydrolase on Carbon Nanotubes for Biosensor Applications, accepted for oral presentation at 12th International Meeting on Chemical Sensors, Jul. 13-16, 2008, Columbus, OH -- Electrochemical characteristics of SWNT-biopolymer nanocomposites, accepted for 213th meeting of The Electrochemical Society, May 18-23, 2008, Phoenix, AR -- Mechanically Robust Antibacterial Thin Films Composed of Single-Walled Carbon Nanotubes and Biopolymers, 2008 AIChE Spring National Meeting, Apr. 6-10, New Orleans, LA -- Production and characterization of protein and DNA based single wall carbon nanocomposites by layer-by-layer assembly, MRS Fall Meeting, Nov. 26-30, 2007, Boston, MA -- Gold surface modified with enzyme-encapsulated silica monolayers for biosensor application, The 58th Southeast Regional Meeting of the American Chemical Society, Nov. 1-4, 2006, Augusta, GA -- Electrochemical modulation of biological interfaces, 209th meeting of The Electrochemical Society, May 7-12, 2006, Denver, CO -- SPR based biosensor using lytic phage as a specific and selective probe for staphylococcus aureus detection, 57th Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Mar. 12-17, 2006, Orlando, FL -- Specific & selective detection of staphylococcus aureus by lytic phage using SPR biosensor, 57th Southeast / 61st Southwest Joint Regional Meeting of the American Chemical Society, Nov. 1-4, 2005, Memphis, TN -- Prevention of non-specific binding as a way to increase sensitivity of SPR-based sensors, 206th meeting of The Electrochemical Society, October 3-8, 2004, Honolulu, HI. Includes bibliographical references.
525

Detection of CD4 and CD8 t-lymphocytes and HER2 breast cancer biomarker using the opto-fluidic ring resonator biosensor

Gohring, John Thomas, Fan, Xudong. January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on March 10, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Thesis advisor: Dr. Xudong Fan. Includes bibliographical references.
526

Gold Nanoparticles and Their Polymer Composites: Synthesis Characterization and Applications

Joshi, Nidhi 31 August 2010 (has links)
Gold nanoparticles are excellent candidates for all the biomedical applications due to their size and shape dependent optical and physiological properties. In this study, gold nanoparticles were synthesized chemically for bio-application. It was observed that the size and shape of gold nanoparticles depend strongly on the concentration of chemical solution, type of reducing agent used in the reaction, temperature of the solution and stabilizing agent for reaction. Transmission electron microscopy (TEM) has been used extensively to determine the size and shape of the gold nanoparticles. Optical properties of the size and shape selected nanoparticles were studied using UV-vis spectrophotometer in absorption mode. The chemically synthesized gold nanoparticles were observed to show excellent absorption property which is reflected by the presence of the characteristic surface plasmon resonance (SPR) band peak. The SPR peak was found to be predominantly dependent on the size of nanoparticles. We have observed a strong red shift with increasing the size of gold nanoparticles. The position of the SPR peak was also observed to change with shape of gold nanostructures. Synthesis and characterization of the composites of gold nanoparticles and Poly (Oanisidine) (POAS) have been carried out in this thesis. Gold-POAS materials system was characterized using UV-vis spectroscopy, TEM, Fourier Transform Infrared Spectroscopy. The chemically synthesized gold nanoparticles were successfully utilized for the study of Respiratory Syncycial Virus (RSV) interaction. Gold nanoparticles were found to inhibit the RSV infection. The electrochemical behavior of gold nanoparticles was studied and their potentials for biosensing applications were tested. Cyclic voltaammetry was performed for the detection of dopamine and ascorbic acid using gold nanoparticles of different sizes. Interaction of gold nanoparticles with Bovine Serum Albumin (BSA) has been studied via absorption spectroscopy and TEM measurements. The absorption spectra of the GNP-BSA show remarkable shift in SPR band peak towards high wavelength. Catalytic properties of the gold nanoparticles were studied by using them as a catalytic activator for the gas sensing applications.
527

Plasmonic nanoparticles for imaging intracellular biomarkers

Kumar, Sonia, 1978- 13 June 2012 (has links)
Molecular optical imaging enables the ability to non-invasively image biological function. When used in conjunction with optical contrast agents, molecular imaging can provide biomarker-specific information with subcellular spatial resolution. Plasmonic nanoparticles are unique optical contrast agents due to the fact that the intensity and peak wavelength of scattering is dependant on interparticle spacing. This distance dependance puts these nanosensors in a position to probe molecular interactions by exploiting contrast between isolated and closely spaced nanoparticles. This dissertation presents the first intracellular molecular imaging platform using multifunctional gold nanoparticles which incorporate both cytosolic delivery and targeting moieties on the same particle. In order to produce robust nanosensors, a novel conjugation strategy was developed involving a heterofunctional linker capable of rigidly attaching various components to the nanoparticle surface. Since most biomarkers of interest are localized intracellularly, the delivery functionality was a key focus. It was achieved using the TAT-HA2 fusion peptide which has been previously shown to enhance both endosomal uptake and subsequent release into the cytosol. The feasibility of these nanoparticles as intracellular sensors was proposed by attempting to image actin rearrangement in live fibroblasts. The assembly of nanoparticles at the leading of motile cells was which was potentially due to actin targeting resulted in a red shift in scattering maxima due to plasmon resonance coupling between particles as well as a dramatic increase in scattering intensity. Although several challenges still exist, the potential for these contrast agents as nanosensors for the presence of proteins implicated in viral carcinogenesis is also introduced. / text
528

Algorithms and analysis for next generation biosensing and sequencing systems

Shamaiah, Manohar 19 November 2012 (has links)
Recent advancements in massively parallel biosensing and sequencing technologies have revolutionized the field of molecular biology and paved the way to novel and exciting innovations in medicine, biology, and environmental monitoring. Among them, biosensor arrays (e.g., DNA and protein microarrays) have gained a lot of attention. DNA microarrays are parallel affinity biosensors that can detect the presence and quantify the amounts of nucleic acid molecules of interest. They rely on chemical attraction between target nucleic acid sequences and their Watson-Crick complements that serve as probes and capture the targets. The molecular binding between the probes and targets is a stochastic process and hence the number of captured targets at any time is a random variable. Detection in conventional DNA microarrays is based on a single measurement taken in the steady state of the binding process. Recently developed real-time DNA microarrays, on the other hand, acquire multiple temporal measurements which allow more precise characterization of the reaction and enable faster detection based on the early dynamics of the binding process. In this thesis, I study target estimation and limits of performance of real time affinity biosensors. Target estimation is mapped to the problem of estimating parameters of discretely observed nonlinear diffusion processes. Performance of the estimators is characterized analytically via Cramer-Rao lower bound on the mean-square error. The proposed algorithms are verified on both simulated and experimental data, demonstrating significant gains over state-of-the-art techniques. In addition to biosensor arrays, in this thesis I present studies of the signal processing aspects of next-generation sequencing systems. Novel sequencing technologies will provide significant improvements in many aspects of human condition, ultimately leading towards the understanding, diagnosis, treatment and prevention of diseases. Reliable decision-making in such downstream applications is predicated upon accurate base-calling, i.e., identification of the order of nucleotides from noisy sequencing data. Base-calling error rates are nonuniform and typically deteriorate with the length of the reads. I have studied performance limits of base-calling, characterizing it by means of an upper bound on the error rates. Moreover, in the context of shotgun sequencing, I analyzed how accuracy of an assembled sequence depends on coverage, i.e., on the average number of times each base in a target sequence is represented in different reads. These analytical results are verified using experimental data. Among many downstream applications of high-throughput biosensing and sequencing technologies, reconstruction of gene regulatory networks is of particular importance. In this thesis, I consider the gene network inference problem and propose a probabilistic graphical approach for solving it. Specifically, I develop graphical models and design message passing algorithms which are then verified using experimental data provided by the Dialogue for Reverse Engineering Assessment and Methods (DREAM) initiative. / text
529

High dynamic range CMOS-integrated biosensors

Singh, Ritu Raj 16 March 2015 (has links)
Biosensors are extremely powerful analytical tools instrumental for detection and quantification of bio-molecules such as DNA, peptides and even metabolites. The recent decade has seen a surge in biosensing applications ranging from molecular diagnostics, environmental monitoring, basic life science research, forensics and biothreat monitoring. The existing biosensor systems of today, however, have several limitations. They are expensive, bulky in size, power hungry, hard to use and with access limited to core facilities. Among other disadvantages, these impediments discourage the availability of point-of-care testing and low cost in-vitro diagnostics (IVD) in locations such as developing and third world countries. The main bottleneck in the development of low-cost and compact biosensors is the effective and efficient integration of several complex components present inside a typical biosensor. These components are the sample preparation, biomolecular recognition, signal transduction and data analysis. With vii the recent advancements in very large scale integration (VLSI) and fabrication technologies, it is now possible to integrate several of these biosensing components into a small form factor. This thesis proposes leveraging the utilization of VLSI technology to develop a low-cost, miniature, portable, fast analysis, high throughput and low power consumption biosensor solution. Apart from the miniaturization bene- fits, employing VLSI technology facilitates low-cost, high yield and low process variation. We present complementary metal-oxide semiconductor (CMOS) integrated microsystem solutions for fluorescence, bioluminescence and electrochemical biosensing. Simulation models are provided for the microsystems and the specifications for the constituent components derived. A common problem in the transducer development of biosensors that we specifically focus on, is the presence of a large non-informative signal called the background signal. This background signal can be several orders of magnitudes higher than the signal of interest and it reduces the overall sensitivity of the biosensor. Existing transducer solutions rely on very high dynamic range, expensive and power hungry solutions to solve the problem of high background signal. To address the problem of overwhelming background signal, this thesis proposes an active background subtraction architecture merged with a Σ∆ modulator. The robust, versatile architecture can be conveniently employed for optical and electrochemical sensing. The proposed architecture attenuates the background signal very early in the signal chain, achieving high dyviii namic range while significantly relaxing the performance requirements of the subsequent circuit blocks in terms of power dissipation, area and bandwidth requirements. To validate the proposed solution, two CMOS IC prototypes were developed for optical and electrochemical sensing respectively. A 12 × 12 array of Σ∆ photodetector with in-pixel background subtraction was developed in 0.18µm standard CMOS technology. The pixel performance has been validated with over 140dB dynamic range and the ability of subtract the background subtraction current validated from 10nA to 10fA. Real time pyrosequencing experiment has also been performed utilizing the photodetector array. A 12 × 12 array of Σ∆ electrochemical sensor with in-pixel background subtraction was developed in 0.18µm standard CMOS technology. Capacitive charge redistribution circuit architecture for bipolar current measurements was employed. The circuit performance was validated over the wide input current range of 100nA to 1pA. / text
530

Spin polarization measurements and sensor applications in thin films and carbon nanotube-based devices

Sanders, Jeff T 01 June 2006 (has links)
The unique properties of carbon nanotubes (CNTs) show a great deal of potential for nanoelectronic devices, spintronic devices, biosensing and chemical sensing applications. Their applicability as interconnects for spintronic devices derives from their one-dimensionality and theoretically predicted preservation of spin current. In this work, we combine an investigation of spin polarization in materials such as half metallic oxides in thin film and bulk form with studies on several aspects of CNTs for sensing and spin transport applications. These two areas of study are intimately related within the umbrella of spin-electronics and nanoscale sensors that are being pursued with great topical interest in recent times. A measurement system has been developed to perform Point-Contact Andreev Reflection (PCAR) in the presence of variable magnetic fields and temperatures. It was designed and built, accepted for patent by the USF, and submitted to the U.S. Patent Office. A study of spin polarization in superconductor-magnet junctions has been performed over a wide range in magnetic fields (0 to 3T) and temperature (2 to 300K)on several systems including copper, strontium ruthenate, and chromium dioxide. Spin transport experiments have been extended to single walled carbon nanotube (SWNT) networks inorder to explore spin transport in nanotube networks for potential sensor applications.Carbon nanotube networks have been used as the electronic material for chemical and biological sensing where capacitance and conductance response to the adsorbtion of a chemical or biological analyte are simultaneously measured and a very fast response and recovery is observed. Chemical specificity has been investigated through different means since a goal of the U.S. Navy is to have an array of these sensors, each chemically specific to a unique analyte. Finally, research is ongoing in the analysis of our PCAR spectra in the strontium ruthenate series and the lanthinum strontiu m manganite series to investigate the square root dependence of the background conductance data and the fundamental aspects of the fitting procedure by using a chi-square statistical model to more accurately determine the spin polarization, P.

Page generated in 0.0633 seconds