• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of a Biomembrane Sensor Based on Reflectometry

Stephan, Milena 10 June 2013 (has links)
Membranproteine spielen eine wichtige Rolle in vielen biochemischen Prozessen der Zelle, wie zum Beispiel der Signaltransduktion, der Zelladhesion oder auch der Erkennung von Krankheitserregern. Viele dieser Proteine sind von Bedeutung für die Entwicklung neuer innovativer Medikamente. Somit hat auch die Entwicklung von Sensoren, die die Untersuchung von Membranproteinen in ihrer natürlichen Umgebung erlauben an Bedeutung gewonnen [1]. Thema dieser Doktorarbeit war die Entwicklung von Analysekonzepten die es ermöglichen unterschiedliche Aspekte von Membraninteraktionen zu untersuchen und zu quantifizieren. Als Analysemethode wurde dafür reflektometrische Interferenz Spektroskopie (RIfS) eine markierungsfreie, optische Methode verwendet. RIfS erlaubt es die Höhe dünner transparenter Filme zu bestimmen, indem das Weißlicht-Reflexionspektrum eines solchen Films aufgezeichnet wird. Durch die Überlagerung der in dem Film mehrfach reflektierten Teilstrahlen entsteht ein Interferenzmuster im Reflexionsspektrum, welches Aufschluß gibt über die Schichtdicke und den Brechungsindex des transparenten Films. Es wurde bereits gezeigt, dass RIfS eine geeignete Methode zur Untersuchung von Protein-ProteinWechselwirkungen ist [2]. Aus diesem Grund wurde RIfS als Detektionsverfahren für die Entwicklung eines Membransensors gewählt. Im Laufe dieser Arbeit entstanden zwei Aufbauten für reflektometrische Messungen. Ein Standard RIfS Aufbau und ein Instrument das die Methode mit Fluoreszenz-Mikroskopie kombiniert. Um dieWechselwirkung von Proteinen selbst und Proteinen mit Membranbestandteilen wie Lipiden zu untersuchen, wurde ein Konzept basierend auf festkörperunterstützten Membranen entwickelt. Dieses Experiment erlaubt es die Wechselwirkungen auf artifiziellen Membranen, sowie auf rekonstituierten Zellmembranen zu untersuchen. Zudem wurde ein Analysekonzept mit Nano-BLMs entwickelt, dass es erlaubt den simultanen Transport von Molekülen in ein membranverschlossenes Kompartiment hinein als auch heraus zu beobachten. Neben diesen membranbasierten Experimenten wurde auch ein Konzept entwickelt, welches es erlaubt die molekulare Erkennungsreaktion von sehr kleiner Analyten direkt zu messen. Dieses Messkonzept erlaubt es die Bindung von Molekülen mit sehr kleinem Molekulargewicht an einen auf dem Sensor immobilisierten Partner direkt zu quantifizieren.
2

Cyaninfarbstoffe als Fluoreszenzsonden in biomimetischen und biologischen Systemen : Fluoreszenz-Korrelations-Spektroskopie und Fluoreszenzanisotropie-Untersuchungen / Cyanine dyes as fluorescent probes in biomimetic and biological systems : fluorescence correlation spectroscopy and fluorescence anisotropy studies

Luschtinetz, Franziska January 2010 (has links)
Um Prozesse in biologischen Systemen auf molekularer Ebene zu untersuchen, haben sich vor allem fluoreszenzspektroskopische Methoden bewährt. Die Möglichkeit, einzelne Moleküle zu beobachten, hat zu einem deutlichen Fortschritt im Verständnis von elementaren biochemischen Prozessen geführt. Zu einer der bekanntesten Methoden der Einzelmolekülspektroskopie zählt die Fluoreszenz-Korrelations-Spektroskopie (FCS), mit deren Hilfe intramolekulare und diffusionsgesteuerte Prozesse in einem Zeitbereich von µs bis ms untersucht werden können. Durch die Verwendung von sog. Fluoreszenzsonden können Informationen über deren molekulare Mikroumgebung erhalten werden. Insbesondere für die konfokale Mikroskopie und die Einzelmolekülspektroskopie werden Fluoreszenzfarbstoffe mit einer hohen Photostabilität und hohen Fluoreszenzquantenausbeute benötigt. Aufgrund ihrer hohen Fluoreszenzquantenausbeute und der Möglichkeit, maßgeschneiderte“ Farbstoffe in einem breiten Spektralbereich für die Absorption und Fluoreszenz zu entwickeln, sind Cyaninfarbstoffe von besonderem Interesse für bioanalytische Anwendungen. Als Fluoreszenzmarker finden diese Farbstoffe insbesondere in der klinischen Diagnostik und den Lebenswissenschaften Verwendung. Die in dieser Arbeit verwendeten Farbstoffe DY-635 und DY-647 sind zwei typische Vertreter dieser Farbstoffklasse. Durch Modifizierung können die Farbstoffe kovalent an biologisch relevante Moleküle gebunden werden. Aufgrund ihres Absorptionsmaximums oberhalb von 630nm werden sie insbesondere in der Bioanalytik eingesetzt. In der vorliegenden Arbeit wurden die spektroskopischen Eigenschaften der Cyaninfarbstoffe DY-635 und DY-647 in biomimetischen und biologischen Modellsystemen untersucht. Zur Charakterisierung wurden dabei neben der Absorptionsspektroskopie insbesondere fluoreszenzspektroskopische Methoden verwendet. Dazu zählen die zeitkorrelierte Einzelphotonenzählung zur Ermittlung des Fluoreszenzabklingverhaltens, Fluoreszenz-Korrelations-Spektroskopie (FCS) zur Beobachtung von Diffusions- und photophysikalischen Desaktivierungsprozessen und die zeitaufgelöste Fluoreszenzanisotropie zur Untersuchung der Rotationsdynamik und Beweglichkeit der Farbstoffe im jeweiligen Modellsystem. Das Biotin-Streptavidin-System wurde als Modellsystem für die Untersuchung von Protein-Ligand-Wechselwirkungen verwendet, da der Bindungsmechanismus weitgehend aufgeklärt ist. Nach Bindung der Farbstoffe an Streptavidin wurde eine erhebliche Veränderung in den Absorptions- und Fluoreszenzeigenschaften beobachtet. Es wird angenommen, dass diese spektralen Veränderungen durch Wechselwirkung von benachbarten, an ein Streptavidintetramer gebundenen Farbstoffmolekülen und Bildung von H-Dimeren verursacht wird. Für das System Biotin-Streptavidin ist bekannt, dass während der Bindung des Liganden (Biotin) an das Protein eine Konformationsänderung auftritt. Anhand von zeitaufgelösten Fluoreszenzanisotropieuntersuchungen konnte in dieser Arbeit gezeigt werden, dass diese strukturellen Veränderungen zu einer starken Einschränkung der Beweglichkeit des Farbstoffes DY-635B führen. Liegt eine Mischung von ungebundenem und Streptavidin-gebundenem Farbstoff vor, können die Anisotropieabklingkurven nicht nach einem exponentiellen Verlauf angepasst werden. Es konnte im Rahmen dieser Arbeit gezeigt werden, dass in diesem Fall die Auswertung mit Hilfe des Assoziativen Anisotropiemodells möglich ist, welches eine Unterscheidung der Beiträge aus den zwei verschiedenen Mikroumgebungen ermöglicht. Als zweites Modellsystem dieser Arbeit wurden Mizellen des nichtionischen Tensids Tween-20 eingesetzt. Mizellen bilden eines der einfachsten Systeme, um die Mikroumgebung einer biologischen Membran nachzuahmen. Sind die Farbstoffe in den Mizellen eingelagert, so kommt es zu keiner Veränderung der Mizellgröße. Die ermittelten Werte des Diffusionskoeffizienten der mizellar eingelagerten Farbstoffe spiegeln demzufolge die Translationsbewegung der Tween-20-Mizellen wider. Die Beweglichkeit der Farbstoffe innerhalb der Tween-20-Mizellen wurde durch zeitaufgelöste Fluoreszenzanisotropiemessungen untersucht. Neben der „Wackelbewegung“, entsprechend dem wobble-in-a-cone-Modell, wird zusätzlich noch die laterale Diffusion der Farbstoffe entlang der Mizelloberfläche beschrieben. / To investigate processes in biological systems on a molecular level, particularly fluorescence spectroscopic methods have proven. The possibility to observe single molecules led to significant progress in the understanding of basic biochemical processes. Fluorescence correlation spectroscopy (FCS) is one of the most popular methods of single molecule spectroscopy and is a powerful technique for the investigation of intramolecular and diffusion-controlled processes on a µs to ms time scale. The photophysical characteristics of fluorescent probes are often strongly influenced by their microenvironment. For confocal microscopy and single molecule detection applications fluorescent dyes with properties, such as high photostability and high fluorescence efficiency are highly needed. Due to the high fluorescence efficiency and the high potential to design tailor-made fluorescence probes covering a wide spectral range in absorption and fluorescence, cyanine dyes are highly attractive as fluorescence probes for bioanalytical applications, such as clinical diagnostics and life sciences. The dyes DY-635 and DY-647 are two typical representatives of this class of dyes and can be covalently attached to biologically relevant molecules. Because of their excitation wavelength above 630nm these dyes are especially suited for bioanalytical applications. In this work the spectroscopic properties of DY-635 and DY-647 in biomimetic and biological model systems were studied by absorption and fluorescence spectroscopy techniques: time-correlated single photon counting to determine fluorescence decay behavior, fluorescence correlation spectroscopy (FCS) to observe diffusion and photophysical deactivation processes, and fluorescence anisotropy to study the mobility and rotational behavior of the dyes in the respective model system. The well characterized system biotin-streptavidin was used as a model system for protein-ligand interactions. Binding to streptavidin resulted in significant changes in the steady-state photophysical characteristics of DY-635B and DY-647. These spectral changes are attributed to dye-dye interactions and the formation of H-dimers. Previous studies have demonstrated, that binding of biotin alters the conformation of streptavidin. Based on the evaluation of time-resolved anisotropy data in this study it was shown that these structural changes result in strong hindrance of the rotational freedom of DY-635B. For mixtures of unbound and streptavidin-bound dyes the fluorescence anisotropy decay curves are found to be nonexponential. In this case the concept of an associated anisotropy were applied which allowed discrimination between contributions from different microenvironments. As a second model system, micelles of the nonionic surfactant Tween-20 were used. Micelles are one of the simplest systems to mimic the microenvironment of a biological membrane. Incorporation of the dyes had no effect on the micelle size. The diffusion coefficient of the dyes, obtained by fluorescence correlation spectroscopy (FCS), reflects the translational behavior of Tween-20 micelles. The mobility of the dyes in the Tween-20 micelles was studied by time-resolved fluorescence anisotropy. In addition to a „wobbling“ motion ccording to the wobble-in-a-cone model, a lateral diffusion of the dyes along the micelle surface is described.
3

STABILITY OF AFFINITY BASED LAYER-BY-LAYER POLYMERIC SELF-ASSEMBLIES FOR ORAL WOUND APPLICATIONS

Authimoolam, Sundar Prasanth 01 January 2011 (has links)
Oral mucositis is a painful and debilitating chronic inflammatory condition that can result from chemo and/or radiotherapy. While current treatment strategies which provide temporary relief exist, there is still an unmet clinical need for a robust long active barrier strategy which can simultaneously provide protection and release drug to enhance the wound healing response. It is proposed that an affinity based layer-by-layer self-assembled barrier administered as a series of mouth rinses can allow for wound specific drug delivery, providing an effective regenerative therapy. In this work, biotinylated poly(acrylic acid) is used to develop LBL assemblies based upon biotin-streptavidin affinity interactions. To explore the ability of developed LBL assemblies to resist the harsh intraoral environment, in vitro chemical and ex vivo mechanical tests are performed. The stability results demonstrate significant LBL barrier stability with wear resistance. From principal component regression analysis, factors such as polymer MW and number of layers in assemblies contributed significantly to chemical barrier stability. Also it is observed that the extent of biotin conjugation plays a significant role in LBL development and in mechanical stability. Thus, the proposed affinity based multilayered assemblies with their excellent barrier properties offer a modular treatment approach in oral mucosal injuries.
4

CELL SURFACE COATINGS FOR MAMMALIAN CELL-BASED THERAPEUTIC DELIVERY

Wu, Pei-Jung 01 January 2019 (has links)
The cell plasma membrane is an interactive interface playing an important role in regulating cell-to-cell, cell-to-tissue contact, and cell-to-environment responses. This environment-responsive phospholipid layer consisting of multiple dynamically balanced macromolecules, such as membrane proteins, carbohydrate and lipids, is regarded as a promising platform for various surface engineering strategies. Through different chemical modification routes, we are able to incorporate various artificial materials into the cell surface for biomedical applications in small molecule and cellular therapeutics. In this dissertation, we establish two different cell coating techniques for applications of cell-mediated drug delivery and the localization of cell-based therapies to specific tissues. The first part of this dissertation establishes a membrane-associated hydrogel patch for drug delivery. The crosslinking of a grafted polymeric patch from a mammalian cell membrane is achieved through surface-mediated photolithographic polymerization. With the use of photomask, the formation of nanoparticle-loaded PEGDA hydrogel is controlled to deposit various geometric features on photoinitiator-immobilized surfaces. Through microarray patch patterning, we analyzed the influence of processing parameters on the accuracy of polymer patterning on a microarray. We then optimized the patterning approach for the formation of PEGDA patches on live A549 cells. In the second part of this dissertation, we study the use of tissue-adhesive coatings to improve the retention of therapeutic mesenchymal stem cells (MSCs) in the heart following intramyocardial or intravenous injection. MSCs were coated with antibodies against ICAM1 to adhere to CAM-overexpressed endothelium present in the heart following MI. Through intramyocardial or intravenous delivery, we observe higher number of coated cells retained in the heart over uncoated ones, supporting enhanced affinity for the inflamed endothelium near the infarct. We correlate the detachment force of antigen-interacted MSCs by a parallel laminar flow assay with the density of ICAM on the substrate and the density of anti-ICAM on the MSC surface. MSC retention on CAMmodified surfaces or activated HUVECs was significantly increased on antibody-coated groups (~90%) under physiologically hemodynamic forces (< 30dyne/cm2), compared to uncoated MSCs (~20%). Moreover, a dramatic reduction of immune cell quantity was observed after intravenous injection, indicating the enhanced immunoregulatory efficacy by systemically delivering ICAM-adhesive MSCs to the site of inflammation.
5

Étudier les fonctions des protéines avec des nanoantennes fluorescentes

Harroun, Scott G. 09 1900 (has links)
Caractériser la fonction des protéines est crucial pour notre compréhension des mécanismes moléculaires de la vie, des maladies, et aussi pour inspirer de nouvelles applications en bionanotechnologie. Pour y arriver, il est nécessaire de caractériser la structure et la dynamique de chaque état occupé par la protéine durant sa fonction. La caractérisation expérimentale des états transitoires des protéines représente encore un défi majeur parce que les techniques à haute résolution structurelle, telles que la spectroscopie RMN et la cristallographie aux rayons X, peuvent difficilement être appliquées à l’étude des états de courte durée. De plus, les techniques à haute résolution temporelle, telles que la spectroscopie de fluorescence, nécessitent généralement une chimie complexe pour introduire des fluorophores à des endroits spécifiques dans la protéine. Dans cette thèse nous introduisons l’utilisation des nanoantennes fluorescentes en tant que nouvelle stratégie pour détecter et signaler les changements de conformation des protéines via des interactions non covalentes entre des fluorophores spécifiques et la surface de la protéine. En utilisant des expériences et des simulations moléculaires, nous démontrons que des fluorophores chimiquement divers peuvent se lier et être utilisés pour sonder différentes régions d’une enzyme modèle, la phosphatase alcaline (PA). Ces nanoantennes peuvent être fixées directement aux protéines ou utilisées à l'aide du système de fixation simple et modulaire, le complexe biotine-streptavidine (SA), qui permet un criblage rapide et efficace de la nanoantenne optimale tant dans sa composition que sa longueur. Dans le cas de la PA, nous montrons que nos nanoantennes permettent la détection et la caractérisation des conformations distinctes incluant les changements conformationnels nanoscopiques produisant durant la catalyse du substrat. Nous démontrons également que les signaux fluorescents émis par la nanoantenne peuvent également permettre de caractériser la cinétique enzymatique d’une protéine en une seule expérience tout en incluant la détermination des paramètres « Michaelis-Menten » de ses substrats et inhibiteurs. Nous avons également exploré l'universalité de la stratégie ces nanoantennes fluorescentes en utilisant une autre protéine modèle, la Protéine G et son interaction avec les anticorps, et avons démontré son utilité pour mettre au point un essai permettant de détecter les anticorps. Ces nanoantennes simples et faciles à utiliser peuvent être appliquées pour détecter et analyser les changements conformationnels de toutes tailles et nos résultats suggèrent qu'elles pourraient être utilisées pour caractériser n’importe quel type de fonction. / The characterisation of protein function is crucial to understanding the molecular mechanisms of life and disease, and inspires new applications in bionanotechnology. To do so, it is necessary to characterise the structure and dynamics of each state that proteins adopt during their function. Experimental study of protein transient states, however, remains a major challenge because high-structural-resolution techniques, including NMR spectroscopy and X-ray crystallography, can often not be directly applied to study short-lived protein states. On the other hand, high-temporal-resolution techniques, such as fluorescence spectroscopy, typically require complicated site-specific labelling chemistry. This thesis introduces the use of fluorescent nanoantennas as a new strategy for sensing and reporting on protein conformational changes through noncovalent dye-protein interactions driven by a high local concentration. Using experiments and molecular simulations, we first demonstrate that chemically diverse dyes can bind and be used to probe different regions of a model enzyme, intestinal alkaline phosphatase (AP). These nanoantennas can be attached directly to proteins or employed using the simple and modular biotin-streptavidin (SA) attachment system, which enables rapid and efficient screening for high sensitivity by tuning their length and composition. We show that these nanoantennas enable the detection and characterisation of distinct conformational changes of AP, including nanoscale conformational changes that occur during substrate catalysis. We also show that the fluorescent signal emitted by the nanoantenna enables complete characterisation of enzyme kinetics in one experiment, including determination of Michaelis-Menten parameters of substrates and inhibitors of AP. We then explored the universality of the nanoantenna strategy by using a different model protein system. Protein G was shown to interact with antibodies, using a rapid screening strategy for antibody detection. These effective and easy-to-use nanoantennas could potentially be employed to monitor various conformational changes, and our results offer potential for characterising various protein functions.

Page generated in 0.0503 seconds