• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo integrado dos sistemas térmico e respiratório do corpo humano. / Integrated model of the thermal and respiratory systems of the human body.

Albuquerque Neto, Cyro 10 December 2010 (has links)
O objetivo deste trabalho é o desenvolvimento de um modelo matemático dos sistemas térmico e respiratório humanos que permita, a partir das condições do ambiente e do nível de atividade física, determinar a distribuição da temperatura e das concentrações de oxigênio e dióxido de carbono ao longo do corpo. No modelo representou-se o corpo humano dividido em quinze segmentos: cabeça, pescoço, tronco, braços, antebraços, mãos, coxas, pernas e pés. Cada segmento contém um compartimento arterial e um compartimento venoso, os quais representam os grandes vasos. O sangue nos pequenos vasos foi considerado juntamente com os tecidos músculo, gordura, pele, osso, cérebro, pulmão, coração e vísceras. Os gases O2 e CO2 são transportados pelo sangue e armazenados nos tecidos, dissolvidos e reagidos quimicamente. Nos tecidos ocorre metabolismo, que consome oxigênio e produz dióxido de carbono e calor. A pele troca calor com o ambiente por condução, convecção, radiação e evaporação. O trato respiratório o faz pela ventilação, por convecção e evaporação. Nos pulmões ocorre transferência de massa, por difusão entre um compartimento alveolar e diversos compartimentos capilares pulmonares. Para modelar o transporte de massa e o transporte de calor nos tecidos foram usadas duas formas distintas. No caso da transferência de massa, os tecidos foram representados por compartimentos nos segmentos modelados. No caso da transferência de calor, foram representados por camadas nos segmentos, sendo que estes ora têm a geometria de um cilindro (seção transversal circular), ora a de um paralelogramo no caso das mãos e dos pés. O sistema regulador do corpo humano foi divido em quatro formas de atuação: metabolismo, circulação, ventilação e sudorese. O metabolismo varia com o calafrio (que depende da temperatura corporal) e a atividade física; a circulação depende da concentração dos gases no corpo, da temperatura e do metabolismo; a ventilação, da concentração dos gases; a sudorese, da temperatura. Para solucionar as equações diferenciais do modelo foram usados métodos numéricos implícitos. As equações diferenciais parciais foram discretizadas pelo método dos volumes finitos. Comparações com trabalhos experimentais encontrados na literatura mostraram que o modelo é adequado para representar variações climáticas, exposições a quantidades reduzidas de oxigênio e elevadas de dióxido de carbono, e situações de exercício físico. Outros resultados gerados pelo modelo demonstraram que acidentes de descompressão tornam-se mais severos quando associados à queda da temperatura ambiente, por causa do aumento do consumo de O2 pelo calafrio. Este também aumenta o risco de uma intoxicação por CO2, devido ao aumento da sua produção. O modelo mostrou-se ainda capaz de prever diversas interações entre os sistemas térmico e respiratório, como a diminuição da temperatura corpórea pelo aumento da ventilação (que depende das concentrações de O2 e CO2), ou a diminuição da pressão parcial dos gases nos segmentos mais extremos, em consequência do efeito da temperatura na capacidade do sangue de transportá-los. / The aim of this work is the development of a mathematical model of the human body respiratory and thermal systems. The model allows the determination of the temperature, oxygen and carbon dioxide distributions, depending on the ambient conditions and the physical activity level. The human body was divided into 15 segments: head, neck, trunk, arms, forearms, hands, thighs, legs and feet. Each segment contains an arterial and a venous compartment, representing the large vessels. The blood in the small vessels is considered together with the tissues muscle, fat, skin, bone, brain, lung, heart and viscera. The gases O2 and CO2 are transported by the blood and stored by the tissues dissolved and chemically reacted. Metabolism takes place in the tissues, where oxygen is consumed generating carbon dioxide and heat. The skin exchanges heat with the environment by conduction, convection, radiation and evaporation. The respiratory tract exchanges heat by convection and evaporation. In the lungs, mass transfer happens by diffusion between an alveolar compartment and several pulmonary capillaries compartments. Two different forms were used to model the transport of mass and heat in the tissues. For the mass transfer, the tissues were represented by compartments inside the segments. For the heat transfer, the tissues were represented by layers inside the segments, which have the geometry of a cylinder (circular cross-section) or a parallelogram hands and feet. The regulatory systems were divided into four mechanisms: metabolism, circulation, ventilation and sweating. The metabolism is modified by the shivering (which depends on the body temperature) and the physical activity; the circulation depends on the body gas concentrations, the temperature and the metabolism; the ventilation depends on the gas concentrations; the sweating depends on the temperature. Implicit methods were used to solve the differential equations. The discretization of the partial differential equations was obtained applying the finite volume method. Comparisons with experimental works found in literature show that the model is suitable to represent the exposure to cold and warm ambients, to low amounts of oxygen, to carbon dioxide, and physical activity. Other results of the developed model show that decompression accidents become more severe when associated to low ambient temperatures, because of the increase in the O2 consumption by shivering. The shivering also increases the danger of a CO2 intoxication, due to the increase of its production. The model showed as well the capacity to represent the several interactions between the thermal and respiratory systems, as the decrease of the body temperature because of the increase in the ventilation (which depends on the O2 and CO2 concentrations), or the decrease of the O2 and CO2 partial pressures in the more extreme segments, consequence of the temperature effect on their blood transport capacity.
2

Modelo integrado dos sistemas térmico e respiratório do corpo humano. / Integrated model of the thermal and respiratory systems of the human body.

Cyro Albuquerque Neto 10 December 2010 (has links)
O objetivo deste trabalho é o desenvolvimento de um modelo matemático dos sistemas térmico e respiratório humanos que permita, a partir das condições do ambiente e do nível de atividade física, determinar a distribuição da temperatura e das concentrações de oxigênio e dióxido de carbono ao longo do corpo. No modelo representou-se o corpo humano dividido em quinze segmentos: cabeça, pescoço, tronco, braços, antebraços, mãos, coxas, pernas e pés. Cada segmento contém um compartimento arterial e um compartimento venoso, os quais representam os grandes vasos. O sangue nos pequenos vasos foi considerado juntamente com os tecidos músculo, gordura, pele, osso, cérebro, pulmão, coração e vísceras. Os gases O2 e CO2 são transportados pelo sangue e armazenados nos tecidos, dissolvidos e reagidos quimicamente. Nos tecidos ocorre metabolismo, que consome oxigênio e produz dióxido de carbono e calor. A pele troca calor com o ambiente por condução, convecção, radiação e evaporação. O trato respiratório o faz pela ventilação, por convecção e evaporação. Nos pulmões ocorre transferência de massa, por difusão entre um compartimento alveolar e diversos compartimentos capilares pulmonares. Para modelar o transporte de massa e o transporte de calor nos tecidos foram usadas duas formas distintas. No caso da transferência de massa, os tecidos foram representados por compartimentos nos segmentos modelados. No caso da transferência de calor, foram representados por camadas nos segmentos, sendo que estes ora têm a geometria de um cilindro (seção transversal circular), ora a de um paralelogramo no caso das mãos e dos pés. O sistema regulador do corpo humano foi divido em quatro formas de atuação: metabolismo, circulação, ventilação e sudorese. O metabolismo varia com o calafrio (que depende da temperatura corporal) e a atividade física; a circulação depende da concentração dos gases no corpo, da temperatura e do metabolismo; a ventilação, da concentração dos gases; a sudorese, da temperatura. Para solucionar as equações diferenciais do modelo foram usados métodos numéricos implícitos. As equações diferenciais parciais foram discretizadas pelo método dos volumes finitos. Comparações com trabalhos experimentais encontrados na literatura mostraram que o modelo é adequado para representar variações climáticas, exposições a quantidades reduzidas de oxigênio e elevadas de dióxido de carbono, e situações de exercício físico. Outros resultados gerados pelo modelo demonstraram que acidentes de descompressão tornam-se mais severos quando associados à queda da temperatura ambiente, por causa do aumento do consumo de O2 pelo calafrio. Este também aumenta o risco de uma intoxicação por CO2, devido ao aumento da sua produção. O modelo mostrou-se ainda capaz de prever diversas interações entre os sistemas térmico e respiratório, como a diminuição da temperatura corpórea pelo aumento da ventilação (que depende das concentrações de O2 e CO2), ou a diminuição da pressão parcial dos gases nos segmentos mais extremos, em consequência do efeito da temperatura na capacidade do sangue de transportá-los. / The aim of this work is the development of a mathematical model of the human body respiratory and thermal systems. The model allows the determination of the temperature, oxygen and carbon dioxide distributions, depending on the ambient conditions and the physical activity level. The human body was divided into 15 segments: head, neck, trunk, arms, forearms, hands, thighs, legs and feet. Each segment contains an arterial and a venous compartment, representing the large vessels. The blood in the small vessels is considered together with the tissues muscle, fat, skin, bone, brain, lung, heart and viscera. The gases O2 and CO2 are transported by the blood and stored by the tissues dissolved and chemically reacted. Metabolism takes place in the tissues, where oxygen is consumed generating carbon dioxide and heat. The skin exchanges heat with the environment by conduction, convection, radiation and evaporation. The respiratory tract exchanges heat by convection and evaporation. In the lungs, mass transfer happens by diffusion between an alveolar compartment and several pulmonary capillaries compartments. Two different forms were used to model the transport of mass and heat in the tissues. For the mass transfer, the tissues were represented by compartments inside the segments. For the heat transfer, the tissues were represented by layers inside the segments, which have the geometry of a cylinder (circular cross-section) or a parallelogram hands and feet. The regulatory systems were divided into four mechanisms: metabolism, circulation, ventilation and sweating. The metabolism is modified by the shivering (which depends on the body temperature) and the physical activity; the circulation depends on the body gas concentrations, the temperature and the metabolism; the ventilation depends on the gas concentrations; the sweating depends on the temperature. Implicit methods were used to solve the differential equations. The discretization of the partial differential equations was obtained applying the finite volume method. Comparisons with experimental works found in literature show that the model is suitable to represent the exposure to cold and warm ambients, to low amounts of oxygen, to carbon dioxide, and physical activity. Other results of the developed model show that decompression accidents become more severe when associated to low ambient temperatures, because of the increase in the O2 consumption by shivering. The shivering also increases the danger of a CO2 intoxication, due to the increase of its production. The model showed as well the capacity to represent the several interactions between the thermal and respiratory systems, as the decrease of the body temperature because of the increase in the ventilation (which depends on the O2 and CO2 concentrations), or the decrease of the O2 and CO2 partial pressures in the more extreme segments, consequence of the temperature effect on their blood transport capacity.
3

Análise teórico-experimental da biotransferência de calor em tecidos sintéticos aquecidos por ultrassom / Theoretical and experimental analysis of the bioheat transfer in synthetic tissues heated by ultrasound

AMORIM, Nelson de Souza 14 April 2016 (has links)
Submitted by Hellen Luz (hellencrisluz@gmail.com) on 2017-06-29T18:39:31Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_AnaliseTeoricoExperimental.pdf: 4179651 bytes, checksum: ab07d2cafac5064f8b99b315dd12c2e8 (MD5) / Approved for entry into archive by Irvana Coutinho (irvana@ufpa.br) on 2017-07-19T13:07:44Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_AnaliseTeoricoExperimental.pdf: 4179651 bytes, checksum: ab07d2cafac5064f8b99b315dd12c2e8 (MD5) / Made available in DSpace on 2017-07-19T13:07:44Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_AnaliseTeoricoExperimental.pdf: 4179651 bytes, checksum: ab07d2cafac5064f8b99b315dd12c2e8 (MD5) Previous issue date: 2016-04-14 / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / O problema inverso de estimativa de parâmetro para o problema de biotransferência de calor em tecidos sintéticos foi analisado. Inicialmente uma abordagem experimental foi desenvolvida, através do aquecimento de um phantom sintético a partir da aplicação de ultrassom terapêutico. Perfis de temperatura, para diferentes casos envolvendo a variação das intensidades, isto é, 1W/cm2, 1,5W/cm2 e 2W/cm2 foram avaliados para 3 termopares posicionados ao longo do phantom sintético. Posteriormente um modelo matemático foi desenvolvido para representar o problema experimental. A solução do modelo foi obtida através da Técnica da Transformada Integral Clássica (CITT). Usando-se o método de Levenberg-Marquardt foi estimado a atenuação do phantom sintético desenvolvido, onde uma comparação foi realizada entre a solução experimental e o modelo teórico proposto. / The inverse problem of parameter estimation for the bioheat transfer problem in sintetic tissue was analyzed. Initially an experimental analysis was developed by heating a synthetic tissue using a ultrasound transducer. Different temperature profiles were obtained for 3 cases involving intensity variations: 1W/cm2, 1.5W/cm2 and 2W/cm2 for 3 thermocouples positioned along the sintetic tissue. A mathematical model was develeped to represent the experimental problem. The solution of this model was obtained using the Classical Integral Transform Technique (CITT). The Levenberg-Marquardt Method was used to solve the parameter estimation for the attenuation of sintetic tissue. A comparison between experimental solution and the mathematical model was performed.
4

Modelo robusto do sistema térmico do corpo humano para simulação de condições ambientais extremas. / Robust model of human thermal system for environmental stress conditions.

Oshiro, Anderson Morikazu 14 March 2014 (has links)
O modelo do sistema térmico do corpo humano consegue representar as respostas térmicas e fisiológicas do corpo a diferentes condições ambientais. Diversos modelos foram propostos por pesquisadores durante algumas décadas. E mesmo os modelos mais utilizados e de pesquisadores conceituados não são robustos o suficiente para apresentar boas respostas para condições ambientais extremas. No presente trabalho, foram introduzidas melhorias no modelo disponível para que este possa melhor representar as reações do corpo em condições de climas tanto rigorosas quanto amenas. Dentre as principais modificações implementadas estão o detalhamento dos membros superiores do corpo, aplicação do efeito q10 e inclusão do modelo de duração da termogênese ativa. Deve-se ressaltar que o modelo é aplicável tanto para climas frios ou quentes. As melhorias devido às modificações aplicadas foram mais notáveis em condições de ambientes frios. As temperaturas das extremidades dos membros superiores tendem a se aproximar da temperatura ambiente. Esse comportamento térmico do corpo também é observado através dos dados experimentais disponíveis na literatura. / The thermal system model of human body is capable to estimate physical and physiological response of body at different environmental conditions. Several models were proposed by some researchers over the last 80 years. Most models are not robust, despite at current developments and studies in the area. In the present work, improvements were applied in the available model, this upgrade allows the human thermal system model respond better at both environmental conditions rigorous and moderate. Detailing the upper limbs vascular system, finger representation, q10 effect on metabolism rate and shivering endurance are among the major changes. The model works well for both environmental conditions, hot and cold. The difference between the proposed model and the available one is most notable at cold environmental condition. The temperature of fingers and hands tend to approach the environment temperature. This thermal behavior of human body is also observable in the experimental data of literature.
5

Modelo robusto do sistema térmico do corpo humano para simulação de condições ambientais extremas. / Robust model of human thermal system for environmental stress conditions.

Anderson Morikazu Oshiro 14 March 2014 (has links)
O modelo do sistema térmico do corpo humano consegue representar as respostas térmicas e fisiológicas do corpo a diferentes condições ambientais. Diversos modelos foram propostos por pesquisadores durante algumas décadas. E mesmo os modelos mais utilizados e de pesquisadores conceituados não são robustos o suficiente para apresentar boas respostas para condições ambientais extremas. No presente trabalho, foram introduzidas melhorias no modelo disponível para que este possa melhor representar as reações do corpo em condições de climas tanto rigorosas quanto amenas. Dentre as principais modificações implementadas estão o detalhamento dos membros superiores do corpo, aplicação do efeito q10 e inclusão do modelo de duração da termogênese ativa. Deve-se ressaltar que o modelo é aplicável tanto para climas frios ou quentes. As melhorias devido às modificações aplicadas foram mais notáveis em condições de ambientes frios. As temperaturas das extremidades dos membros superiores tendem a se aproximar da temperatura ambiente. Esse comportamento térmico do corpo também é observado através dos dados experimentais disponíveis na literatura. / The thermal system model of human body is capable to estimate physical and physiological response of body at different environmental conditions. Several models were proposed by some researchers over the last 80 years. Most models are not robust, despite at current developments and studies in the area. In the present work, improvements were applied in the available model, this upgrade allows the human thermal system model respond better at both environmental conditions rigorous and moderate. Detailing the upper limbs vascular system, finger representation, q10 effect on metabolism rate and shivering endurance are among the major changes. The model works well for both environmental conditions, hot and cold. The difference between the proposed model and the available one is most notable at cold environmental condition. The temperature of fingers and hands tend to approach the environment temperature. This thermal behavior of human body is also observable in the experimental data of literature.
6

Simulações numéricas 3D em ambiente paralelo de hipertermia com nanopartículas magnéticas

Reis, Ruy Freitas 05 November 2014 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-02-24T15:43:42Z No. of bitstreams: 1 ruyfreitasreis.pdf: 10496081 bytes, checksum: 05695a7e896bd684b83ab5850df95449 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-03-06T19:28:45Z (GMT) No. of bitstreams: 1 ruyfreitasreis.pdf: 10496081 bytes, checksum: 05695a7e896bd684b83ab5850df95449 (MD5) / Made available in DSpace on 2017-03-06T19:28:45Z (GMT). No. of bitstreams: 1 ruyfreitasreis.pdf: 10496081 bytes, checksum: 05695a7e896bd684b83ab5850df95449 (MD5) Previous issue date: 2014-11-05 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Este estudo tem como objetivo a modelagem numérica do tratamento de tumores sólidos com hipertermia utilizando nanopartículas magnéticas, considerando o modelo tridimensional de biotransferência de calor proposto por Pennes (1948). Foram comparadas duas diferentes possibilidades de perfusão sanguínea, a primeira constante e, a segunda, dependente da temperatura. O tecido é modelado com as camadas de pele, gordura e músculo, além do tumor. Para encontrar a solução aproximada do modelo foi aplicado o método das diferenças finitas (MDF) em um meio heterogêneo. Devido aos diferentes parâmetros de perfusão, foram obtidos sistemas de equações lineares (perfusão constante) e não lineares (perfusão dependente da temperatura). No domínio do tempo foram utilizados dois esquemas numéricos explícitos, o primeiro utilizando o método clássico de Euler e o segundo um algoritmo do tipo preditor-corretor adaptado dos métodos de integração generalizada da família-alpha trapezoidal. Uma vez que a execução de um modelo tridimensional demanda um alto custo computacional, foram empregados dois esquemas de paralelização do método numérico, o primeiro baseado na API de programação paralela OpenMP e o segundo com a plataforma CUDA. Os resultados experimentais mostraram que a paralelização em OpenMP obteve aceleração de até 39 vezes comparada com a versão serial, e, além disto, a versão em CUDA também foi eficiente, obtendo um ganho de 242 vezes, também comparando-se com o tempo de execução sequencial. Assim, o resultado da execução é obtido cerca de duas vezes mais rápido do que o fenômeno biológico. / This work deals with the numerical modeling of solid tumor treatments with hyperthermia using magnetic nanoparticles considering a 3D bioheat transfer model proposed by Pennes(1948). Two different possibilities of blood perfusion were compared, the first assumes a constant value, and the second one a temperature-dependent function. The living tissue was modeled with skin, fat and muscle layers, in addition to the tumor. The model solution was approximated with the finite difference method (FDM) in an heterogeneous medium. Due to different blood perfusion parameters, a system of linear equations (constant perfusion), and a system of nonlinear equations (temperaturedependent perfusion) were obtained. To discretize the time domain, two explicit numerical strategies were used, the first one was using the classical Euler method, and the second one a predictor-corrector algorithm originated from the generalized trapezoidal alpha-family of time integration methods. Since the computational time required to solve a threedimensional model is large, two different parallel strategies were applied to the numerical method. The first one uses the OpenMP parallel programming API, and the second one the CUDA platform. The experimental results showed that the parallelization using OpenMP improves the performance up to 39 times faster than the sequential execution time, and the CUDA version was also efficient, yielding gains up to 242 times faster than the sequential execution time. Thus, this result ensures an execution time twice faster than the biological phenomenon.

Page generated in 0.0809 seconds