• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 47
  • 34
  • 16
  • 14
  • 11
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Bistatic space-time adaptive processing for ground moving target indication

Lim, Chin-Heng January 2006 (has links)
Space-time adaptive processing (STAP) for bistatic airborne radar offers several advantages, such as the higher possibility of detecting stealth targets. However, in a bistatic environment, the usual impediment and possible clutter in-homogeneity is further complicated by the rangedependent nature of the clutter ridge in the angle-Doppler plane induced by the physical geometry of the two aircrafts. This complicates the clutter suppression problem and leads to signi cant degradation in performance. The major objective of this thesis is to develop training methods for bistatic radar operation in a dense environment of ground-moving targets. The work is directed towards what may be called `small STAP', where the number of spatial channels is small and the array is non-uniform. The work is motivated by a desire to minimise the amount of navigational data associated with both the transmitter and receiver. Furthermore, it is directed towards environments where all range gates may contain targets. This thesis presents several novel STAP approaches, which can be classi ed into two main categories, to address the range dependency problem within a bistatic airborne radar framework. The rst category is on training strategies for joint-domain localised (JDL)-STAP in a bistatic environment. The JDL algorithm is originally proposed to reduce the computational complexity for monostatic radar by using a two-dimensional discrete Fourier transformation to transform the data from the space-time domain into the angle-Doppler domain. However, it has restrictions that essentially assume the receiving antenna to be an equi-spaced linear array of ideal, isotropic, point sensors. Two novel algorithms are proposed to overcome these two restrictions and they incorporate angle and Doppler compensation into the JDL processor to mitigate the bistatic clutter Doppler range dependency problem. In addition, a novel JDL in-the-gate processing approach is proposed, which forgoes the training data requirement and operates solely on the test data set. This single data set detection approach alleviates the high target density or heterogeneity problems associated with the training data requirement of conventional STAP algorithms. It is particularly applicable to heterogeneous environments where the clutter homogeneity assumption does not hold or independent training data is not readily available. The second category is on bistatic STAP training without navigation data. A novel technique is proposed to predict the range-dependent inverse covariance matrix, which is used to compute the STAP lter weights, by utilising linear prediction theory. The proposed technique provides mitigation against additional clutter notches resulting from range and Doppler ambiguities. It also allows for detection in other range gates under test without having to re-compute the prediction weights. Another novel technique is proposed to obtain an estimate of the rangedependent inverse covariance matrix by using an eigen-analysis based method. This technique involves applying eigen-decomposition to the covariance matrix in each range gate, sorting the eigenvalues by using maximum inner-product of the eigenvectors of the training range gate with respect to the test range gate and then averaging the resulting sorted eigenvalues. Both of the proposed techniques eliminate the requirement for a uniform linear array and can be applied to arrays of arbitrary con guration. No navigational data or parameter estimation is necessary as only the clutter data is required, thus reducing real-time computational costs.
12

Bistatic radar system analysis and software development /

Teo, Ching Leong. January 2003 (has links) (PDF)
Thesis (M.S. in Engineering Science)--Naval Postgraduate School, December 2003. / Thesis advisor(s): David C. Jenn, D. Curtis Schleher. Includes bibliographical references (p. 95-96). Also available online.
13

The scattering of high frequency electromagnetic radiation from the ocean surface : an analysis based on a bistatic ground wave radar configuration /

Gill, Eric William, January 1999 (has links)
Thesis (Ph. D.), Memorial University of Newfoundland, 1999. / Bibliography: p. 215-220.
14

The second-order high frequency bistatic radar cross section of the ocean surface for "patch scatter" /

Huang, Weimin, January 2004 (has links)
Thesis (M.Eng.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 68-78.
15

The use of multistaic radar in reducing the impact of wind farm on civilian radar system

Al Mashhadani, Waleed January 2017 (has links)
The effects of wind farm installation on the conventional monostatic radar operation have been investigated in previous studies. The interference on radar operation is due to the complex scattering characteristics from the wind turbine structure. This research considers alternative approach for studying and potentially mitigating these negative impacts by adapting the multistatic radar system technique. This radar principle is well known and it is attracting research interest recently, but has not been applied in modelling the wind farm interference on multistatic radar detection and tracking of multiple targets. The research proposes two areas of novelties. The first area includes the simulation tool development of multistatic radar operation near a wind farm environment. The second area includes the adaptation of Range-Only target detection approach based on mathematical and/or statistical methods for target detection and tracking, such as Interval Analysis and Particle Filter. These methods have not been applied against such complex detection scenario of large number of targets within a wind farm environment. Range-Only target detection approach is often considered to achieve flexibility in design and reduction in cost and complexity of the radar system. However, this approach may require advanced signal processing techniques to effectively associate measurements from multiple sensors to estimate targets positions. This issue proved to be more challenging for the complex detection environment of a wind farm due to the increase in number of measurements from the complex radar scattering of each turbine. The research conducts a comparison between Interval Analysis and Particle Filter. The comparison is based on the performance of the two methods according to three aspects; number of real targets detected, number of ghost targets detected and the accuracy of the estimated detections. Different detection scenarios are considered for this comparison, such as single target detection, wind farm detection, and ultimately multiple targets at various elevations within a wind farm environment.
16

Analysis around the focal plane of a bistatic laser radar system

Bower, Anne Wilkinson 01 July 2001 (has links)
No description available.
17

Surface Parameter Estimation using Bistatic Polarimetric X-band Measurements

Ben Khadhra, Kais 29 October 2008 (has links) (PDF)
To date only very few bistatic measurements (airborne or in controlled laboratories) have been reported. Therefore most of the current remote sensing methods are still focused on monostatic (backscatter) measurements. These methods, based on theoretical, empirical or semi-empirical models, enable the estimation of soil roughness and the soil humidity (dielectric constant). For the bistatic case only theoretical methods have been developed and tested with monostatic data. Hence, there still remains a vital need to gain of experience and knowledge about bistatic methods and data. The main purpose of this thesis is to estimate the soil moisture and the soil roughness by using full polarimetric bistatic measurements. In the experimental part, bistatic X-band measurements, which have been recorded in the Bistatic Measurement Facility (BMF) at the DLR Oberpfaffenhofen, Microwaves and Radar Institute, will be presented. The bistatic measurement sets are composed of soils with different statistical roughness and different moistures controlled by a TDR (Time Domain Reflectivity) system. The BMF has been calibrated using the Isolated Antenna Calibration Technique (IACT). The validation of the calibration was achieved by measuring the reflectivity of fresh water. In the second part, bistatic surface scattering analyses of the calibrated data set were discussed. Then, the specular algorithm was used to estimate the soil moisture of two surface roughnesses (rough and smooth) has been reported. A new technique using the coherent term of the Integral Equation Method (IEM) to estimate the soil roughness was presented. Also, the sensitivity of phase and reflectivity with regard to moisture variation in the specular direction was evaluated. Finally, the first results and validations of bistatic radar polarimetry for the specular case of surface scattering have been introduced. / Aktuell sind nur sehr wenige Messungen mit bistatischem Radar durchgeführt worden, sei es von Flugzeuggetragenen Systemen oder durch spezielle Aufbauten im Labor. Deshalb basieren die meisten der bekannten Methoden zur Fernerkundung mit Radar auf monostatis-chen Messungen der Rückstreuung des Radarsignals. Diese Methoden, die auf theoretischen, empirischen oder halb-empirischen Modellen basieren, ermöglichen die Schätzung der Oberfächenrauhigkeit und die Bodenfeuchtigkeit (Dielektrizitätskonstante). Im bistatischen Fall wurden bisher nur theoretische Modelle entworfen, die mittels monostatischer Messungen getestet wurden. Aus diesem Grund ist es von großer Bedeutung, Erfahrung und Wissen über die physikalischen Effekte in bistatischen Konfigurationen zu sammeln. Das Hauptziel der vorliegenden Dissertation ist es, anhand vollpolarimetrischer, bistatischer Radarmessungen die Oberfächenrauhigkeit und Bodenfeuchtigkeit zu bestimmen. Im experimentellen Teil der Arbeit werden die Ergebnisse bistatischer Messungen präsentiert, die in der Bistatic Measurement Facility (BMF) des DLR Oberpfaffenhofen aufgenommen wurden. Die Datensätze umfassen Messungen von Böden unterschiedlicher statistischer Rauhigkeit und Feuchtigkeit, die mittels eines Time Domain Reflectivity (TDR) Systems bestimmt werden. Zur Kalibration des BMF wurde die Isolated Antenna Calibration Technique (IACT) verwendet und anhand der Messung der Reflektivität von Wasser überprüft. Im zweiten Teil der vorliegenden Arbeit wird anhand der kalibrierten Daten eine Analyse der Oberflächenstreuung in bistatischen Konfigurationen vorgenommen. Im Anschluss daran wird mittels des Specular Algorithm eine Schätzung der Bodenfeuchte zweier Proben unter- schiedlicher Rauhigkeit (rau und fein) durchgeführt. Ein neues Verfahren zur Schätzung der Oberfächenrauhigkeit, das auf dem kohärenten Term der Integral Equation Method (IEM) basiert, wurde eingeführt. Daneben wird die Empfindlichkeit der Phase sowie der Reflektivität des vorwärtsgestreuten Signals gegenüber Veränderungen der Bodenfeuchtigkeit analysiert. Schließlich werden erste Ergebnisse und Validierungen bistatischer Radarpolarimetrie für den Fall der Vorwärtsstreuung präsentiert.
18

Examination of the use of exact versus approximate phase weights on the performance of a synthetic aperture sonar system

Boland, Matthew R. 03 1900
Approved for public release; distribution in unlimited. / Synthetic aperture sonar beamforming and signal processing relies on properly steering and focusing the aperture beam pattern in order to co-phase all the received signals. Due to the effects of motion in the synthetic aperture sonar problem, the propagation path between the transmitter, discrete point scatterer, and the receiver is time varying. Traditionally, simple approximations are used to determine these propagation ranges and angles of incidence and scatter. Methods to determine these ranges and angles exactly may significantly improve array gain and, therefore, target detection. This thesis investigates improvements to SAS signal processing algorithms using exact methods for the calculation of the time-varying ranges between transmitter and discrete point scatter, and between discrete point scatter and receiver, and the phase angle of the scattered acoustic signal incident upon the receiver. Using computer simulations, exact range and angle calculations were performed for different scenarios and compared to ranges and angles determined using standard approximations. The exact ranges were then used to determine incident phase, and were again compared to the approximate methods. Comparison of the exact and approximate methods was based on range estimation error and percentage error. Improvements in synthetic aperture array gain using exact phase weights based on exact, time-varying range solutions are proposed. / http://hdl.handle.net/10945/1142 / Lieutenant, United States Navy
19

Passive Aircraft Altimetry using GPS as a Bistatic Radar : A simulation model / Passiv Höjdmätning i Flygplan, med GPS som en Bistatisk Radar : En simuleringsmodell

Andersson, Anders, Hallgren, Daniel January 2003 (has links)
<p>A common way to measure height in aerial vehicles is to use a radar height altimeter (RHM). Since the RHM transmits radar pulses that can be detected, a passive alternative would be desirable in military applications. The idea to use reflected signals from the Global Positioning System (GPS) as a bistatic radar, has been established over the last years. The GPS signals are already present and would not reveal aeroplanes in covert operations. </p><p>In this thesis, the use of reflected GPS signals as a bistatic, passive altimeter is examined. A simulation model has been developed and implemented, and simulations using the model have been done. Different types of ground cover have been investigated, both water and land types, with varying reflectivity and scattering behaviour. For larger terrain variations, e.g. mountains and valleys, a ground elevation database has been used. Furthermore, several parameters, like the antenna coverage and the satellite elevation angle, have been varied and the result of this examined. </p><p>The results of these simulations show that measuring height is possible for bothsea and land surfaces. The accuracy depends on several error factors, like a bias originating from surface roughness and measurement errors due to noise in the receiver. The simulations also show that the most important design parameter is the antenna, which must be designed to give a sufficiently large SNR, capture the specular reflection and avoid unwanted reflections.</p>
20

Passive Aircraft Altimetry using GPS as a Bistatic Radar : A simulation model / Passiv Höjdmätning i Flygplan, med GPS som en Bistatisk Radar : En simuleringsmodell

Andersson, Anders, Hallgren, Daniel January 2003 (has links)
A common way to measure height in aerial vehicles is to use a radar height altimeter (RHM). Since the RHM transmits radar pulses that can be detected, a passive alternative would be desirable in military applications. The idea to use reflected signals from the Global Positioning System (GPS) as a bistatic radar, has been established over the last years. The GPS signals are already present and would not reveal aeroplanes in covert operations. In this thesis, the use of reflected GPS signals as a bistatic, passive altimeter is examined. A simulation model has been developed and implemented, and simulations using the model have been done. Different types of ground cover have been investigated, both water and land types, with varying reflectivity and scattering behaviour. For larger terrain variations, e.g. mountains and valleys, a ground elevation database has been used. Furthermore, several parameters, like the antenna coverage and the satellite elevation angle, have been varied and the result of this examined. The results of these simulations show that measuring height is possible for bothsea and land surfaces. The accuracy depends on several error factors, like a bias originating from surface roughness and measurement errors due to noise in the receiver. The simulations also show that the most important design parameter is the antenna, which must be designed to give a sufficiently large SNR, capture the specular reflection and avoid unwanted reflections.

Page generated in 0.0835 seconds