• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 135
  • 36
  • 16
  • 9
  • 7
  • 7
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 235
  • 60
  • 59
  • 47
  • 29
  • 28
  • 24
  • 24
  • 23
  • 23
  • 21
  • 21
  • 21
  • 21
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Návrh a posouzení asfaltového betonu pro ložní vrstvy s asfaltem modifikovaným pryžovým granulátem / Design and evaluation of asphalt rubber mixture for pavement binder course

Musílek, Lukáš January 2013 (has links)
The design of asphalt concrete for binder courses with high-viscosity asphalt rubber and low-viscosity asphalt rubber is carried out in the diploma thesis. Selected performance tests (low temperature characteristics, stiffness and fatigue) and water sensitivity are performed for these mixtures. Results are compared each other.
212

Relaxace smykového napětí asfaltových pojiv v DSR / Shear stress relaxation of bituminous binders in DSR

Musil, Vladimír January 2015 (has links)
The thesis describes the relaxation properties of bituminous binders determined in dynamic shear rheometer (DSR). Paving bitumen, polymer modified bitumen (PMB) and crumb rubber modified bitumen (CRmB) were chosen for comparison. In order to describe the effects of ageing on asphalt binders relaxation properties, the laboratory simulation of ageing using RTFOT and 3xRTFOT method was performed. For each binder were simultaneously conducted tests of needle penetration, softening point and elastic recovery. Selected bitumens were used for the production of asphalt mixtures. The low-temperature properties tests (TSRST) were performed for these mixtures, when the results were compared to the relaxation properties of binders determined in the DSR.
213

Hrubozrnné asfaltové směsi / Coarse-grained asphalt mixtures

Brida, Peter January 2022 (has links)
The diploma thesis is focused on the comparison of the influence coarse-grained aggragate on the properties af asphalt concrete. The theoretical part describes issue of production and usage of asphalt mixtures. The practical part evaluates multiple types of asphalt mixtures and describing their properties. Stiffness by a two-point bending test, a wheel tracking test and low-temperature cracking and properties by uniaxial tension test were used to evaluate the properties of the mixtures.
214

Použití R-materiálu do asfaltových směsí typu asfaltový koberec mastixový / Usage of reclaimed asphalt pavement in stone mastic asphalt

Coufalíková, Iva January 2019 (has links)
The dissertation deals with the possibilities of adding recycled asphalt pavement (RAP) to the stone mastic asphalt (SMA), which is increasingly being promoted due to its good resistance to permanent deformations and high traffic load. Thanks to the use of high-quality input materials in production, this is a valuable material source. The theoretical part describes composition of SMA mixture and problems of pavement recycling. The practical part deals with SMA 11S laboratory designs with RAP ratio of 0 to 50%. Based on these suggestions, a trial section with 17 variants was placed, which varied with the content and quality of the RAP and the used additives. All variants have been subjected to functional testing not only on mixtures but also on recovered binders. The results obtained during the dissertation were used to build a certified methodology named "Methodology of application RAP to Stone Mastic Asphalt." In conclusion, the results of the dissertation are summarized.
215

Využití polymerem modifikovaných asfaltů a oživovacích přísad v asfaltových směsích / Usage of polymer modified bitumens and rejuvenators in asphalt mixtures

Maláník, Stanislav Unknown Date (has links)
Diploma thesis deals with the influence of various dosing of Reclaimed asphalt pavement (RAP) using modified bitumen on the properties of asphalt concrete (ACO 11+) of cemented by polymer modified bitumen, while a rejuvenating agents are added into asphalt mixtures. The theoretical part of the thesis summarizes the basic knowledge of pavement recycling, polymer modified bitumens and their reuse in asphalt mixtures. The practical part deals with laboratory tests of ACO 11+ mixtures with the RAP proportion of 0 % to 50 %. The asphalt mixtures compared are evaluated by means of the Thermal Stress Restrained Specimen Test (TSRST) and Stiffness test. The results obtained within the diploma thesis can approximate the issue of recycling of asphalt mixtures with polymer modified bitumens.
216

Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailings

Miller, Warren Gregory 11 1900 (has links)
A study was conducted to evaluate the properties and processes influencing the rate and magnitude of volume decrease and strength gain for oil sand fine tailings resulting from a change in bitumen extraction process (caustic versus non-caustic) and the effect of adding a coagulant to caustic fine tailings. Laboratory flume deposition tests were carried out with the objective to hydraulically deposit oil sand tailings and compare the effects of extraction processes on the nature of beach deposits in terms of geometry, particle size distribution, and density. A good correlation exists between flume deposition tests results using oil sand tailings and the various other tailings materials. These comparisons show the reliability and effectiveness of flume deposition tests in terms of establishing general relationships and can serve as a guide to predict beach slopes. Fine tailings were collected from the various flume tests and a comprehensive description of physical and chemical characteristics of the different fine tailings was carried out. The characteristics of the fine tailings is presented in terms of index properties, mineralogy, specific surface area, water chemistry, liquid limits, particle size distribution and structure. The influence of these fundamental properties on the compressibility, hydraulic conductivity and shear strength properties of the fine tailings was assessed. Fourteen two meter and one meter high standpipe tests were instrumented to monitor the rate and magnitude of self-weight consolidation of the different fine tailings materials. Consolidation tests using slurry consolidometers were carried out to determine consolidation properties, namely compressibility and hydraulic conductivity, as well as the effect of adding a coagulant (calcium sulphate [CaSO4]) to caustic fine tailings. The thixotropic strength of the fine tailings was examined by measuring shear strength over time using a vane shear apparatus. A difference in water chemistry during bitumen extraction was concluded to be the cause of substantial differences in particle size distributions and degree of dispersion of the comparable caustic and non-caustic fine tailings. The degree of dispersion was consistent with predictions for dispersed clays established by the sodium adsorption ratio (SAR) values for these materials. The biggest advantage of non-caustic fine tailings and treating caustic fine tailings with coagulant is an increased initial settlement rate and slightly increased hydraulic conductivity at higher void ratios. Thereafter, compressibility and hydraulic conductivity are governed by effective stress. The chemical characteristics of fine tailings (water chemistry, degree of dispersion) do not have a significant impact on their compressibility behaviour and have only a small influence at high void ratio (low effective stress). Fine tailings from a caustic based extraction process had relatively higher shear strengths than comparable non-caustic fine tailings at equivalent void ratios. However, shear strength differences were small and the overall impact on consolidation behaviour, which also depends on compressibility and hydraulic conductivity, is not expected to be significant.
217

Evaluation of Dust Suppressants for Gravel Roads : Methods Development and Efficiency Studies

Edvardsson, Karin January 2010 (has links)
Approximately 75 percent (300 000 km) of the total Swedish road network and 20 percent(20 000 km) of the national road network consists of gravel roads. One of the most significantproblems associated with gravel roads is traffic-generated dust emission, which contributes tothe deterioration of the road surface and acts as a major source of particulate matter releasedinto the atmosphere, thereby involving public economics, road safety, human health, andenvironmental quality. In order to bind the fine granular material, which is prone to rise into theair, dust suppressants are applied on roads on a yearly basis. Methods for evaluating the efficiency of dust suppressants will facilitate in the selection of themost appropriate product and its optimal application rate. For example, methods forsupervision of residual dust suppressant concentration are valuable tools for estimatinglongevity and optimal application rates, and, consequently, effectiveness of different products. Application of the proper dust suppressant to a gravel road ensures road safety and ridingcomfort as well as creating a cleaner and healthier environment for residents in buildingsadjacent to the road. It also reduces the need and cost for vehicle repair, road maintenanceactivities, and aggregate supplementation. Both field-based and laboratory research were performed to evaluate the efficiency of varioussuppressants and the influence such factors as product concentration, leaching, and fine materialcontent have on the efficiency of different products. Within the field-based research, a newlydeveloped mobile methodology was used to measure dust emission on numerous test sectionstreated with various dust suppressants. In general, all dust suppressants tested, except apolysaccharide (sugar) and products, which form a brittle surface crust, i.e. lignosulphonate andbitumen emulsion, showed acceptable dust reduction. Test sections treated with a magnesium- or calcium chloride solution were the most effectivelydust suppressed. The application of solutions instead of a solid salts achieves a more uniformproduct distribution and, therefore, probably a more efficient performance. By applying acalcium- or magnesium chloride solution instead of traditionally used solids, the cost for annualdust control, as well as the environmental impact from the release of these chemicals in theenvironment, can be reduced by 50 percent. A significant problem when using dust suppressants is their tendency to leach during rainfalldue to their soluble properties. Residual chloride could be detected in the gravel wearing courseover a longer period of time than lignosulphonate and, therefore, showed more effective longtermperformance. Optimal percentages of fine material for minimal lignosulphonate andchloride leaching were found to be 15 percent by weight and 10-16 percent by weight,respectively. Ions of calcium chloride seemed to initiate flocculation of clay particles, therebypreventing them from leaching. Still, the fine material in gravel wearing courses has to be replenished regularly as indicated by studies of the longevity of fine material. Loss up to80 percent was found after two years. Toxicity tests show that dust suppressant application for dust control purposes, at traditionallyused application rates, does not constitute a threat to sensitive aquatic life. Tests on subsoilwater samples indicated elevated chloride levels, which possibly could cause corrosion to pipes,but not high enough to flavour drinking water. / QC20100616
218

Applications of Solid-Phase Microextraction to Chemical Characterization of Materials Used in Road Construction

Tang, Bing January 2008 (has links)
Environmental and health aspects of road materials have been discussed for a long time, mostly regarding bitumen and bitumen fumes. However, just a few studies on other types of road materials have been reported. In this doctoral study, two types of materials, asphalt release agents and bituminous sealants, were investigated with regard to chemical characterization and emission profiles. Besides conventional test methods, solid-phase microextraction (SPME) technique was applied for emissions profiles screening and quantitative analysis. General description of main characteristics of asphalt release agents and bituminous sealants is given, and a comprehensive state-of-the-art on SPME technique is presented, especially on methodologies for analyzing mono- and polycyclic aromatic hydrocarbons (MAHs and PAHs) in different sample matrices. In the experimental study, chemical characterization of the two material types was performed using conventional methods, including fourier transform infrared spectroscopy - attenuated total reflectance (FTIR-ATR), gel permeation chromatography (GPC), mass spectrometry (MS) and gas chromatography – mass spectrometry (GC-MS). General patterns regarding functional groups and molecular weight distribution were studied. In the case of asphalt release agents, more detailed information on chemical compositions, especially the contents of MAHs and PAHs, was obtained. General information on emission proneness of asphalt release agents was obtained using thermogravimetric analysis (TGA) and MS. Using headspace(HS)-SPME and GC-MS, emission profiles of asphalt release agents were characterized at different temperatures, whereas the profiles of bituminous sealants were obtained solely at room temperature. The results presented were used for ranking the materials with regard to degree of total emission as well as emission of hazardous substances. The applicability of HS-SPME for quantitative analysis of MAHs in asphalt release agents and emulsion-based bituminous sealants was investigated. The use of a surrogate sample matrix was concerned, and experimental parameters influencing the HS-SPME procedure, such as equilibration and extraction time, as well as effects of sample amount and matrices, were studied. The methods were evaluated with regard to detection limit, accuracy as well as precision. Different calibration approaches including external calibration, internal calibration and standard addition were investigated. The determination of MAHs in asphalt release agents and emulsion-based bituminous sealants using HS-SPME-GC-MS was conducted. / QC 20100913
219

Mass Transfer Mechanisms during the Solvent Recovery of Heavy Oil

James, Lesley 18 June 2009 (has links)
Canada has the second largest proven oil reserves next to Saudi Arabia which is mostly located in Alberta and Saskatchewan but is unconventional heavy oil and bitumen. The tar sands are found at the surface and are mined, yet 80% of the 173 billion barrels of heavy oil and bitumen exist in-situ according to the Canadian Association of Petroleum Producers (CAPP). Two factors inhibit the economic extraction and processing of Canadian heavy oil; its enormous viscosity ranging from 1000 to over 1 million mPa.s and the asphaltene content (high molecular weight molecules containing heavy metals and sulphur). Heavy oil and bitumen were only included in the reserves estimates through the efforts of Canadian enhanced oil recovery (EOR) research. Viscosity reduction is the one common element of in-situ methods of heavy oil recovery with the exception of cold production. Currently, steam assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS) are being used commercially in the field where the oil’s viscosity is reduced by injecting steam. Thermal methods are energy intensive requiring vast volumes of water such that any improvement would be beneficial. Solvent extraction is one alternative requiring no water, the solvent is recoverable and reusable, and depending on the mode of operation the heavy oil is upgraded in-situ. Vapour Extraction (VAPEX) and enhanced solvent extraction (N-SolvTM) are two such methods. VAPEX and N-Solv reduce the bitumen’s viscosity via mass transfer and a combination of mass and heat transfer, respectively. A light hydrocarbon solvent (instead of steam) is injected into an upper horizontal well where the solvent mixes with the heavy oil, reduces its viscosity and allows the oil to drain under gravity to a bottom production well. The idea of using solvents for heavy oil extraction has been around since the 1970s and both VAPEX and N-Solv are patented processes. However, there is still much to be learned about how these processes physically work. Research to date has focused on varying system parameters (including model dimensions, permeability, heavy oil viscosity, solvent type and injection rate, etc.) to observe the effect on oil production from laboratory scale models. Based on an early mass balance model by Butler and Mokrys (1989) and an improvement by Das (1995), molecular diffusion alone cannot account for the produced oil rates observed from laboratory models. Until recently, very little progress had been made towards qualifying and quantifying the mass transfer mechanisms with the exception of the diffusivity of light hydrocarbons in heavy oil. Mass transfer can only be by diffusion and convection. Differentiating and quantifying the contribution of each is complex due to the nature and viscosity of the oil. The goal of this thesis is to investigate the mass transfer mechanisms during the solvent recovery of heavy oil. Quantifying the diffusion of light hydrocarbon solvents has been an active topic of research with limited success since the mid 1990’s. The experimental approach presented here focused on capturing the rate of solvent mass transfer into the bitumen by measuring the bitumen swelling and the butane uptake independently. Unlike early pressure decay methods, the pressure is held constant to not violate the assumed equilibrium solvent concentration at the interfacial boundary condition. The high solubility of solvent in heavy oil complicates the physical modeling because simplifying assumptions of a constant diffusion coefficient, constant density and a quiescent liquid should not be used. The model was developed from first principles to predict the bitumen swelling. The form of the concentration dependent diffusivity was assumed and the diffusivity coefficients initially guessed. The swelling (moving boundary) was fixed by defining a new dimensionless space coordinate and the set of partial differential equations solved using the method of lines. Using the non-linear regression (lsqnonlin) function in MATLAB®, optimising for the difference in predicted and experimentally found bitumen heights and independently validating the result using the solvent uptake, the diffusivity of butane in heavy oil (at 25oC) was found to be Dsb = 4.78 x 10-6ωs + 4.91 x 10-6 cm2/s where ωs is the solvent mass fraction. Diffusion alone has proven inadequate in predicting oil recovery rates from laboratory scale models. It is logical to assume that convective mass transfer plays a role at mixing the solvent and bitumen while draining via gravity through the reservoir porous matrix. Solvent extraction experiments were conducted in etched glass micromodels to observe the pore scale phenomena. The pore scale mechanisms were found to differ depending on how the solvent extraction was operated, with non-condensing (VAPEX) or condensing (N-SolvTM) solvent. Observations show increased convective mixing and an increased rate of interface advancement when the solvent condenses on the bitumen surface. Evidence of trapped butane vapour being mobilised with the draining live oil and a technique of observing solvent extraction using UV light confirm that the draining live oil is on average one pore deep. While the interface appears from a distance to be uniform, at the pore scale it is not. Live oil can drain from one to two pores via capillary displacement mechanisms in one section of the interface and via film flow only in another area (James and Chatzis 2004; James et al. 2008). This work also shows the detrimental impact of having a non-condensable gas present during solvent extraction (James and Chatzis 2008). In summary, this work emphasises the mass transfer and drainage displacement mechanisms of non-condensing (VAPEX) and condensing (N-Solv) solvent extraction methods of heavy oil recovery.
220

Mass Transfer Mechanisms during the Solvent Recovery of Heavy Oil

James, Lesley 18 June 2009 (has links)
Canada has the second largest proven oil reserves next to Saudi Arabia which is mostly located in Alberta and Saskatchewan but is unconventional heavy oil and bitumen. The tar sands are found at the surface and are mined, yet 80% of the 173 billion barrels of heavy oil and bitumen exist in-situ according to the Canadian Association of Petroleum Producers (CAPP). Two factors inhibit the economic extraction and processing of Canadian heavy oil; its enormous viscosity ranging from 1000 to over 1 million mPa.s and the asphaltene content (high molecular weight molecules containing heavy metals and sulphur). Heavy oil and bitumen were only included in the reserves estimates through the efforts of Canadian enhanced oil recovery (EOR) research. Viscosity reduction is the one common element of in-situ methods of heavy oil recovery with the exception of cold production. Currently, steam assisted gravity drainage (SAGD) and cyclic steam stimulation (CSS) are being used commercially in the field where the oil’s viscosity is reduced by injecting steam. Thermal methods are energy intensive requiring vast volumes of water such that any improvement would be beneficial. Solvent extraction is one alternative requiring no water, the solvent is recoverable and reusable, and depending on the mode of operation the heavy oil is upgraded in-situ. Vapour Extraction (VAPEX) and enhanced solvent extraction (N-SolvTM) are two such methods. VAPEX and N-Solv reduce the bitumen’s viscosity via mass transfer and a combination of mass and heat transfer, respectively. A light hydrocarbon solvent (instead of steam) is injected into an upper horizontal well where the solvent mixes with the heavy oil, reduces its viscosity and allows the oil to drain under gravity to a bottom production well. The idea of using solvents for heavy oil extraction has been around since the 1970s and both VAPEX and N-Solv are patented processes. However, there is still much to be learned about how these processes physically work. Research to date has focused on varying system parameters (including model dimensions, permeability, heavy oil viscosity, solvent type and injection rate, etc.) to observe the effect on oil production from laboratory scale models. Based on an early mass balance model by Butler and Mokrys (1989) and an improvement by Das (1995), molecular diffusion alone cannot account for the produced oil rates observed from laboratory models. Until recently, very little progress had been made towards qualifying and quantifying the mass transfer mechanisms with the exception of the diffusivity of light hydrocarbons in heavy oil. Mass transfer can only be by diffusion and convection. Differentiating and quantifying the contribution of each is complex due to the nature and viscosity of the oil. The goal of this thesis is to investigate the mass transfer mechanisms during the solvent recovery of heavy oil. Quantifying the diffusion of light hydrocarbon solvents has been an active topic of research with limited success since the mid 1990’s. The experimental approach presented here focused on capturing the rate of solvent mass transfer into the bitumen by measuring the bitumen swelling and the butane uptake independently. Unlike early pressure decay methods, the pressure is held constant to not violate the assumed equilibrium solvent concentration at the interfacial boundary condition. The high solubility of solvent in heavy oil complicates the physical modeling because simplifying assumptions of a constant diffusion coefficient, constant density and a quiescent liquid should not be used. The model was developed from first principles to predict the bitumen swelling. The form of the concentration dependent diffusivity was assumed and the diffusivity coefficients initially guessed. The swelling (moving boundary) was fixed by defining a new dimensionless space coordinate and the set of partial differential equations solved using the method of lines. Using the non-linear regression (lsqnonlin) function in MATLAB®, optimising for the difference in predicted and experimentally found bitumen heights and independently validating the result using the solvent uptake, the diffusivity of butane in heavy oil (at 25oC) was found to be Dsb = 4.78 x 10-6ωs + 4.91 x 10-6 cm2/s where ωs is the solvent mass fraction. Diffusion alone has proven inadequate in predicting oil recovery rates from laboratory scale models. It is logical to assume that convective mass transfer plays a role at mixing the solvent and bitumen while draining via gravity through the reservoir porous matrix. Solvent extraction experiments were conducted in etched glass micromodels to observe the pore scale phenomena. The pore scale mechanisms were found to differ depending on how the solvent extraction was operated, with non-condensing (VAPEX) or condensing (N-SolvTM) solvent. Observations show increased convective mixing and an increased rate of interface advancement when the solvent condenses on the bitumen surface. Evidence of trapped butane vapour being mobilised with the draining live oil and a technique of observing solvent extraction using UV light confirm that the draining live oil is on average one pore deep. While the interface appears from a distance to be uniform, at the pore scale it is not. Live oil can drain from one to two pores via capillary displacement mechanisms in one section of the interface and via film flow only in another area (James and Chatzis 2004; James et al. 2008). This work also shows the detrimental impact of having a non-condensable gas present during solvent extraction (James and Chatzis 2008). In summary, this work emphasises the mass transfer and drainage displacement mechanisms of non-condensing (VAPEX) and condensing (N-Solv) solvent extraction methods of heavy oil recovery.

Page generated in 0.0393 seconds