• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 2
  • Tagged with
  • 15
  • 15
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Réduction de modèle par sous-structuration et modes non-linéaires : Application à la dynamique des roues aubagées

Joannin, Colas 28 April 2017 (has links)
Le désaccordage des roues aubagées est une thématique de recherche d’un intérêt tout particulier pour l’industrie aéronautique, en recherche constante d’outils de calcul toujours plus prédictifs et performants pour répondre aux exigences croissantes des organismes de certification. Si le phénomène est aujourd’hui relativement bien maîtrisé dans un cadre linéaire, la prise en compte des non-linéarités dans l’étude du désaccordage reste encore problématique, notamment en raison du manque de méthode adaptée pour mener ce type d’analyses sur des modèles industriels. L’objectif principal de ce travail de thèse est de proposer une nouvelle méthode de calcul permettant de déterminer efficacement la réponse forcée d’une roue aubagée désaccordée, en tenant compte de l’impact des non-linéarités sur la dynamique de la structure à l’échelle macroscopique. La méthode développée repose sur le concept de sous-structuration, et exploite la notion de mode complexe non-linéaire pour capturer les non-linéarités dans l’espace de réduction de chaque sous-structure. En adoptant une approche fréquentielle, les sous-structures sont représentées par des super-éléments non-linéaires, dont l’assemblage conduit au modèle réduit de la roue désaccordée. La résolution du système mathématique obtenu est ensuite réalisée numériquement par des techniques itératives. La méthode développée a pu être testée et validée sur différents systèmes soumis à des non-linéarités de frottement, allant du simple modèle phénoménologique à un modèle éléments finis de roue aubagée industrielle. Sur des modèles à paramètres concentrés de taille relativement faible, les performances très intéressantes de cette méthode permettent de conduire des études statistiques quantitatives sur l’impact du désaccordage en présence de non-linéarités. Les résultats obtenus suggèrent que le comportement du système non-linéaire face au désaccordage est susceptible d’être significativement différent du comportement de son homologue linéaire, d’où l’intérêt de mener ce type d’investigations. Les performances de cette méthode ont également pu être confirmées sur des modèles éléments finis de grande taille, en permettant de réaliser à un coût raisonnable des simulations de réponse forcée non-linéaire sur une roue industrielle désaccordée. / Mistuning of bladed disks has been a key topic of research for the aeronautics industry. To get accreditation for their engines, manufacturers must comply with evermore stringent requirements, and thus constantly seek for better simulation tools. Even though the phenomenon is well understood nowadays for linear systems, nonlinearities are still seldom taken into account when dealing with the mistuning of industrial structures, partly due to the lack of a dedicated method to tackle such a complex problematic. The main objective of this work is to develop a novel method allowing to compute efficiently the forced response of a mistuned bladed disk, while taking into account the impact of nonlinearities on the vibrations at a macroscopic scale. The method derived relies on a substructuring approach, and uses the concept of nonlinear complex modes to capture the nonlinearities in the reduction basis of each substructure. In the frequency domain, the substructures take the form of nonlinear superelements, which once assembled lead to the reduced-order model of the mistuned bladed disk. The resulting mathematical system is then solved by means of iterative solvers. This new method is tested and validated on different systems subjected to dry friction nonlinearities, from basic phenomenological models to large-scale finite element models of industrial structures. On lumped-parameter models, the performance of this method allows to investigate the statistical impact of mistuning in the presence of nonlinearities, by performing thousands of simulations. The results suggest that the behaviour of the nonlinear model can be significantly different from that of the linear one, hence the importance to carry out such investigations. The capabilities of the method have also been confirmed on large-scale models, by performing several forced response computations on a nonlinear and mistuned finite element model, at a reasonable cost
12

Experimental and Computational Investigation of a Rotating Bladed Disk under Synchronous and Non-Synchronous Vibration

Kurstak, Eric 13 October 2021 (has links)
No description available.
13

Optimalizace modálního tlumení lopatek vysokotlakých stupňů parních turbín / Optimization of Modal Damping of Blades in High Pressure Stages of Steam Turbine

Lošák, Petr January 2011 (has links)
Steam turbine rotor is a very complicated assembly, typically consists of several rotor rows. Due to design limitations and increasing demands on the efficiency of the steam turbines, it is practically impossible to avoid all of the resonant states. The significant vibrations can occur, for example, due to passing resonance state during turbine start up or run out. In the worst case the turbine operates state is close to the resonance state of the rotor row. This leads to the significant oscillation of the bladed disk, and may results in the blade (or blade to disk joints) high cycle fatigue. These parts are highly loaded components and any cracks are unacceptable. Therefore it is absolutely necessary to damp vibration by using, for example, passive damping elements. The damping element analyzed in this thesis is a strap with an isosceles trapezoidal cross section, which is placed in the circumferential dovetail groove in the blade segmental shrouding. The sliding between the contact surfaces leads to the dissipation of energy which causes decreasing of undesirable vibrations. The main aim is to design the optimal dimensions of the strap cross-section with a view to the most effective damping of vibration for a particular turbine operating state. Considered bladed disk has 54 blades which are coupled in 18 packets by segmental shrouding. The damping element is paced in circumferential dovetail groove created in the shrouding. This type of damping element is suitable especially for damping vibrations in the axial direction and only with the mode shape with the nodal diameters. The modal properties of the bladed disk are influenced by the sliding distance. Since the friction force depends on centrifugal force acting on the damping element and on the angle of the side walls of the strap and groove, the sliding distance can be influenced by the damping element dimensions. During the optimization process the best possible size of middle width, height and angle of damping element cross-section is searched. The strap weight, contact area size and flexural stiffness of damping element can be influenced by these parameters. Their change has also impact on the size of the contact pressure and thus on the size of relative motion as well. As stated previously, the damping efficiency is influenced by the relative motion between the damping element and shrouding. Numerical simulation in time domain is very time-consuming, especially for systems containing nonlinearities. In order to verify dynamic behavior of the computational model with the passive friction element in numerical simulations, the simplified model is created. The model is created in the ANSYS environment. The main requirement imposed on this model is to have as small number of degrees of freedom as possible, so the time needed to perform the simulation is reduced to a minimum. To satisfy this requirement the simplified model is a cantilever beam with rectangular cross section. The dovetail groove is created in this model in longitudinal direction. In this groove is damping element. In addition to damping element dimensions optimization, the influence of each design variable on model dynamic behavior is studied. The results are verified experimentally. Experiment also shows other interesting results that confirm the damping element influence on the modal characteristics. The gained knowledge is used to optimize the dimensions of the damping element in the model of the bladed disk.
14

Development of microslip friction models and forced response prediction methods for frictionally constrained turbine blades

Cigeroglu, Ender 16 July 2007 (has links)
No description available.
15

Etude de l'usure par fretting sous chargements dynamiques dans les interfaces frottantes : application aux pieds d'aubes de turbomachines

Salles, Loïc 07 December 2010 (has links)
Les parties tournantes des turbomachines aéronautiques sont composées d’une succession de roues aubagées qui permettent le transfert de l’énergie entre l’air et le rotor. Ces roues aubagées constituent des pièces particulièrement sensibles car elles doivent répondre en termes de dimensionnement à des impératifs de performances aérodynamiques, d’aéroacoustique et de tenue mécanique à la rotation,à la température et à la charge aérodynamique. Le contact avec frottement existant au niveau des attaches aube-disque joue un rôle important sur les niveaux vibratoires.Ce travail porte sur l’étude de l’usure par fretting sous chargements dynamiques dans les interfaces frottantes. En effet, les vibrations de l’aube peuvent produire des micro-glissements en pied d’aubequi peuvent entraîner un phénomène d’usure par fretting. Les connaissances sur le comportement de l’usure sous sollicitations dynamiques sont faibles. Seuls existent des outils numériques pour modéliser l’usure dans le cas de sollicitations quasi-statiques. Nous proposons dans cette thèse des méthodes pour calculer l’évolution de l’usure au cours des cycles de chargement dynamique basées sur une approche multi-échelle en temps. La réponse vibratoire de la structure est liée à une échelle de temps rapide qui est calculée par une méthode d’équilibrage harmonique, dans laquelle les déplacements et les efforts sont projetés sur la base de Fourier. Différentes approches temps-fréquence de calcul des coefficients de Fourier des forces de contact sont présentées. La cinétique d’usure est liée à une échelle lente et différentes méthodes sont proposées pour l’intégrer. La prise en compte des géométries usées dans le modèle éléments finis se fait par l’ajout d’un vecteur des profondeurs d’usure dans le terme de pénalité des lagrangiens dynamiques. Des exemples académiques valident et illustrent les méthodes proposées. Ces méthodes sont ensuite appliquées à l’étude de l’usure par fretting en pied d’aube de soufflante. L’étude numérique met en lumière le couplage entre vibration et usure par fretting aux interfaces de contact. La modification du comportement dynamique global de la roue aubagée est aussi observée. / The rotating parts of aeronautical turbomachineries are made of bladed disks which enable the transfer of energy from the air to the rotor. These bladed disks are especially critical parts because their dimensioning has to meet strict requirements in terms of aerodynamical performance, aeroacoustics and mechanical resistance to rotation, temperature and aerodynamical loads. The frictional contact at the interface between blade and disk has an important influence on the vibratory levels.This work deals with the study of fretting-wear in frictional interfaces under dynamical loading. Indeed,the blade’s vibrations can produce micro-slidings in blade’s root which may entail fretting-wear. Wear under dynamical loading is a badly known phenomenon. Numerical tools exist for quasic-static conditions only. Here,methods are proposed to quantify the evolution of wear along dynamical loadingcycles based on a time-multiscale approach. The vibratory response of the structure is linked with a fasttime scale which is calculated by a harmonic balance method : displacements and forces are expressed through Fourier series. Different frequency-time approaches are presented to compute the Fourier coefficients of contact forces. Wear kinetics is linked with a slow time scale and different methods are proposed to integrate it.Worn geometries are taken into account in the finite elements model by a wear depth vector included in the penalty term of dynamic lagrangians. Academic examples validate and illustrate the proposed methods. These methods are then used to study fretting-wear in a fan’s bladeroot. The numerical results highlight the coupling between vibration and fretting-wear in frictional interfaces.The modification of the global dynamical behaviour of the bladed disk is also observed.

Page generated in 0.044 seconds