• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 41
  • 18
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 244
  • 67
  • 62
  • 49
  • 40
  • 34
  • 34
  • 29
  • 27
  • 27
  • 25
  • 25
  • 23
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Impedance-Based Structural Health Monitoring of Wind Turbine Blades

Pitchford, Corey 21 November 2007 (has links)
Wind power is a fast-growing source of non-polluting, renewable energy with vast potential. However, current wind technology must be improved before the potential of wind power can be fully realized. One of the key components in improving wind turbines is their blades. Blade failure is very costly because blade failure can damage other blades, the wind turbine itself, and possibly other wind turbines. A successful structural health monitoring (SHM) system incorporated into wind turbines could extend blade life and allow for less conservative designs. Impedance-based SHM is a method which has shown promise on a wide variety of structures. The technique utilizes small piezoceramic (PZT) patches attached to a structure as self-sensing actuators to both excite the structure with high-frequency excitations, and monitor any changes in structural mechanical impedance. By monitoring the electrical impedance of the PZT, assessments can be made about the integrity of the mechanical structure. Recent advances in hardware systems with onboard computing, including actuation and sensing, computational algorithms, and wireless telemetry, have improved the accessibility of the impedance method for in-field measurements. The feasibility of implementing impedance-based SHM on wind turbine blades is investigated in this work. Experimentation was performed to determine the capability of the method to detect damage on blades. First, tests were run to detect both indirect and actual forms of damage on a section of an actual wind turbine blade provided by Sandia National Laboratories. Additional tests were run on the same blade section using a high-frequency response function method of SHM for comparison. Finally, based on the results of the initial testing, the impedance method was utilized in an attempt to detect damage during a fatigue test of an experimental wind turbine blade at the National Renewable Energy Laboratory's National Wind Technology Center. / Master of Science
112

Development of an Electromagnetic Energy Harvester for Monitoring Wind Turbine Blades

Joyce, Bryan Steven 03 January 2012 (has links)
Wind turbine blades experience tremendous stresses while in operation. Failure of a blade can damage other components or other wind turbines. This research focuses on developing an electromagnetic energy harvester for powering structural health monitoring (SHM) equipment inside a turbine blade. The harvester consists of a magnet inside a tube with coils outside the tube. The changing orientation of the blade causes the magnet to slide along the tube, inducing a voltage in the coils which in turn powers the SHM system. This thesis begins with a brief history of electromagnetic energy harvesting and energy harvesters in rotating environments. Next a model of the harvester is developed encompassing the motion of the magnet, the current in the electrical circuit, and the coupling between the mechanical and electrical domains. The nonlinear coupling factor is derived from Faraday's law of induction and from modeling the magnet as a magnetic dipole moment. Three experiments are performed to validate the model: a free fall test to verify the coupling factor expression, a rotating test to study the model with a load resistor circuit, and a capacitor charging test to examine the model with an energy storage circuit. The validated model is then examined under varying tube lengths and positions, varying coil sizes and positions, and variations in other parameters. Finally a sample harvester is presented that can power an SHM system inside a large scale wind turbine blade spinning up to 20 RPM and can produce up to 14.1 mW at 19 RPM. / Master of Science
113

Prediction of axial compressor blade vibration by modelling fluid-structure interaction

Brandsen, Jacobus Daniel 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: The Council for Scientific and Industrial Research has developed a vibration excitation system. The system is designed to excite the rotor blades of an axial compressor in the specified vibration mode and at the specified frequency. The vibration excitation system was tested on Stellenbosch University’s Rofanco compressor test bench. A two-way staggered fluid-structure interaction (FSI) model was created that was capable of simulating the vibration of the rotor blades excited by the system. The results of the FSI model were verified using available experimental data. It was concluded that the FSI model is able to recreate the vibration excited by the system to within the desired level of accuracy. In addition, the results of the FSI model showed that the vibration excitation system should be able to excite the blades in the selected vibration mode and at the selected frequency provided that the excitation frequency is close the natural frequency of the first bending mode. The results also suggested that a transient computational fluid dynamics model should be sufficient for the prediction of the aerodynamic forces acting on the rotor blades. Furthermore, a one-way staggered FSI model should be adequate for calculating the motions of the blades. / AFRIKAANSE OPSOMMING: Die Wetenskaplike en Nywerheidnavorsingsraad het ’n vibrasie-opwekkingstelsel ontwerp om die rotorlemme van ’n aksiaalvloei kompressor in die gespesifiseerde vibrasiemodus en teen die gespesifiseerde frekwensie op te wek. Die vibrasieopwekkingstelsel is met behulp van die Universiteit Stellenbosch se Rofanco kompressortoetsbank getoets. Daarna is ’n tweerigting vloeistof-struktuur-interaksie model geskep om die vibrasie van die rotorlemme, wat deur die stelsel opgewek is, te simuleer. Beskikbare eksperimentele data is gebruik om die resultate van die vloeistof-struktuur-interaksie model te bevestig. Die gevolgtrekking is gemaak dat die model wél die vibrasie van die lemme met die nodige akkuraatheid kan simuleer. Die resultate van die vloeistof-struktuur-interaksie model toon ook dat die stelsel die lemme in die gekose vibrasiemodus en teen die gekose frekwensie behoort te kan opwek, solank die opwekkingsfrekwensie na aan die natuurlike frekwensie van die eerste buigmodus is. Voorts dui die resultate daarop dat ’n berekeningsvloeimeganika model die aërodinamiese laste van die lemme sal kan voorspel. ’n Eenrigting vloeistof-struktuur-interaksie model behoort voldoende te wees om die beweging van die rotorlemme te bereken.
114

Ausarbeitung eines Finite-Elemente-Simulationsmodells für die Belastungen beim Kuttern und Optimierung diverser Kuttermesser mit bionischen Strukturen / Formulation of a finite-element-simulation model for the loads during the cutting process in a bowl cutter and optimization of various cutter blades with bionic structures

Morgenstern, Martin 08 May 2014 (has links) (PDF)
In der fleischverarbeitenden Industrie gibt es eine Vielzahl von Schneidwerkzeugen. Kuttermesser stehen hierbei in der Prozesskette weit hinten und haben einen direkten Einfluss auf die Qualität des Endprodukts. Der Prozess des Kutterns ist bislang nicht komplett analytisch geklärt. Während des Vorgangs durchläuft das Schneidgut (i.A. das Fleisch bzw. das Brät) wechselnde Aggregatzustände von fester (leicht gefrorener) Form hin zum zähviskosen Zustand. Weiterhin ist es permanentem korrosiven Kontakt ausgesetzt. Die Komplexität macht eine analytische Herangehensweise äußerst aufwendig, sodass sich mittels der FEM durch numerisches Vorgehen und Lastannahmen aus Untersuchungen diesem Problem gewidmet wird. Dabei sind bislang nicht bekannte Potentiale zu erkennen. Hierbei wurden verschiedene Vernetzungsstrategien (p- und h-Methode) der FEM angewandt und verglichen. Es sind dabei Materialreduktionen bis knapp 30% ersichtlich.
115

Development of a Comprehensive Design Methodology and Fatigue Life Prediction of Composite Turbine Blades under Random Ocean Current Loading

Unknown Date (has links)
A comprehensive study was performed to overcome the design issues related to Ocean Current Turbine (OCT) blades. Statistical ocean current models were developed in terms of the probability density function, the vertical profile of mean velocity, and the power spectral density. The models accounted for randomness in ocean currents, tidal effect, and ocean depth. The proposed models gave a good prediction of the velocity variations at the Florida Straits of the Gulf Stream. A novel procedure was developed to couple Fluid-Structure Interaction (FSI) with blade element momentum theory. The FSI effect was included by considering changes in inflow velocity, lift and drag coefficients of blade elements. Geometric non-linearity was also considered to account for large deflection. The proposed FSI analysis predicted a power loss of 3.1 % due to large deflection of the OCT blade. The method contributed to saving extensive computational cost and time compared to a CFD-based FSI analysis. The random ocean current loadings were calculated by considering the ocean current turbulence, the wake flow behind the support structure, and the velocity shear. The random ocean current loadings had large probability of high stress ratio. Fatigue tests of GFRP coupons and composite sandwich panels under such random loading were performed. Fatigue life increased by a power function for GFRP coupons and by a linearlog function for composite sandwich panels as the mean velocity decreased. To accurately predict the fatigue life, a new fatigue model based on the stiffness degradation was proposed. Fatigue life of GFRP coupons was predicted using the proposed model, and a comparison was made with experimental results. As a summary, a set of new design procedures for OCT blades has been introduced and verified with various case studies of experimental turbines. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2017. / FAU Electronic Theses and Dissertations Collection
116

Advancements in rotor blade cross-sectional analysis using the variational-asymptotic method

Rajagopal, Anurag 22 May 2014 (has links)
Rotor (helicopter/wind turbine) blades are typically slender structures that can be modeled as beams. Beam modeling, however, involves a substantial mathematical formulation that ultimately helps save computational costs. A beam theory for rotor blades must account for (i) initial twist and/or curvature, (ii) inclusion of composite materials, (iii) large displacements and rotations; and be capable of offering significant computational savings compared to a non-linear 3D FEA (Finite Element Analysis). The mathematical foundation of the current effort is the Variational Asymptotic Method (VAM), which is used to rigorously reduce the 3D problem into a 1D or beam problem, i.e., perform a cross-sectional analysis, without any ad hoc assumptions regarding the deformation. Since its inception, the VAM based cross-sectional analysis problem has been in a constant state of flux to expand its horizons and increase its potency; and this is precisely the target at which the objectives of this work are aimed. The problems addressed are the stress-strain-displacement recovery for spanwise non-uniform beams, analytical verification studies for the initial curvature effect, higher fidelity stress-strain-displacement recovery, oblique cross-sectional analysis, modeling of thin-walled beams considering the interaction of small parameters and the analysis of plates of variable thickness. The following are the chief conclusions that can be drawn from this work: 1. In accurately determining the stress, strain and displacement of a spanwise non-uniform beam, an analysis which accounts for the tilting of the normal and the subsequent modification of the stress-traction boundary conditions is required. 2. Asymptotic expansion of the metric tensor of the undeformed state and its powers are needed to capture the stiffnesses of curved beams in tune with elasticity theory. Further improvements in the stiffness matrix can be achieved by a partial transformation to the Generalized Timoshenko theory. 3. For the planar deformation of curved laminated strip-beams, closed-form analytical expressions can be generated for the stiffness matrix and recovery; further certain beam stiffnesses can be extracted not only by a direct 3D to 1D dimensional reduction, but a sequential dimensional reduction, the intermediate being a plate theory. 4. Evaluation of the second-order warping allows for a higher fidelity extraction of stress, strain and displacement with negligible additional computational costs. 5. The definition of a cross section has been expanded to include surfaces which need not be perpendicular to the reference line. 6. Analysis of thin-walled rotor blade segments using asymptotic methods should consider a small parameter associated with the wall thickness; further the analysis procedure can be initiated from a laminated shell theory instead of 3D. 7. Structural analysis of plates of variable thickness involves an 8×8 plate stiffness matrix and 3D recovery which explicitly depend on the parameters describing the thickness, in contrast to the simplistic and erroneous approach of replacing the thickness by its variation.
117

Evolution Of Microstructure And Residual Stress In Disc-shape Eb-pvd Thermal Barrier Coatings And Temperature Profile Of High Pressure Turbine Blade

Mukherjee, Sriparna 01 January 2011 (has links)
A detailed understanding of failure mechanisms in thermal barrier coatings (TBCs) can help develop reliable and durable TBCs for advanced gas turbine engines. One of the characteristics of failure in electron beam physical vapor deposited (EB-PVD) TBCs is the development of instability, named rumpling, at the interface between (Ni, Pt)Al bond coat and thermally grown oxide (TGO). In this study, thermal cycling at 1100°C with 1 hr dwell time was carried out on 25.4mm disc specimens of TBCs that consisted of EB-PVD coated ZrO2-7wt. %Y2O3, (Pt,Ni)Al bond coat, and CMSX-4 Ni-based superalloy. At specific fraction of lifetime, TBCs were examined by electron microscopy and photostimulated luminescence (PL). Changes in the average compressive residual stress of the TGO determined by PL and the magnitude of rumpling, determined by tortuosity from quantitative microstructural analyses, were examined with respect to the furnace thermal cyclic lifetime and microstructural evolution of TBCs. The combination of elastic strain energy within the TGO and interfacial energy at the interface between the TGO and the bond coat was defined as the TGO energy, and its variation with cyclic oxidation time was found to remain approximately constant ~135J/m2 during thermal cycling from 10% to 80% thermal cyclic lifetime. Parametric study at ~135J/m2 was performed and variation in residual stress with rumpling for different oxide scale thicknesses was examined. This study showed that the contribution of rumpling in residual stress relaxation decreased with an increase in TGO thickness. High pressure turbine blades serviced for 2843 hours and in the as coated form were also examined using electron microscopy and photostimulated luminescence. The difference in iv residual stress values obtained using PL on the suction and pressure sides of as-coated turbine blade were discussed. The presence of a thick layer of deposit on the serviced blade gave signals from stress free α-Al2O3 in the deposit, not from the TGO. The TGO growth constant data from the disc-shape TBCs, thermally cycled at 1100°C, and studies by other authors at different temperatures but on similar EB-PVD coated TBCs with (Pt, Ni)Al bond coat and CMSX-4 Nibased superalloy were used to determine the temperature profile at the YSZ/bond coat interface. The interfacial temperature profiles of the serviced blade and the YSZ thickness profile were compared to document the variable temperature exposure at the leading edge, trailing edge, suction and the pressure side.
118

Prediction of Physical Behavior of Rotating Blades under Tip-Rub Impact using Numerical Modeling

Subramanya, S January 2013 (has links) (PDF)
Rotating blades, which are the most critical components of any turbo-machinery, need to be designed to withstand forced vibrations due to accidental tip rub impact against inner surface of casing. These vibrations are typically dependent on operating conditions and geometric parameters. In the current study, a rotor test rig with a maximum tip speed capability of 144 km/hr has been developed for studying the dynamic behavior of representative jet engine compressor blades actuated by the closure of clearance between the tip of a given rotating blade and a sector of the inner lining of the casing. Ten different blade profiles are chosen in the present research. The blades are obtained by lofting NACA GOE123 airfoil cross-section along different stacking axes. Rotor test rigs which simulate transient dynamic events require high frequency data acquisition systems like slip ring arrangement or telemetric transmission. While slip rings introduce noise into the signal, the telemetric transmission works out to be rather expensive. To circumvent the stated shortcomings of data acquisition systems, a novel rotor-mounted data acquisition system has been implemented here which captures dynamic strains in vibrating blades during operation. The current data acquisition system can store data for duration of five seconds with a sampling rate of 35 kHz. It has been calibrated with four standard tests, and provides a simple and efficient mode of data capturing. Three blades with airfoil sections (a flat beam-type blade of uniform rectangular cross-section, a blade with twisted cross-sections stacked along a straight line, and a blade similar to the latter but with a curved stacking axis) are tested under controlled rub conditions at four different speeds. The maximum test speed is restricted to 800 rpm for reasons of safety although the set-up is designed to operate up to a maximum speed of 2000 rpm. For each of the rotor speeds, a blade is tested for three to four different stagger angles in the range of 0o-30o. By plotting the RMS values of measured dynamic responses with respect to stagger angle for a given rotor speed, it has been observed, perhaps for the first time in published literature, that a stagger angle of around 20o yields the maximum RMS value of strain response. A major objective of the current study has been to utilize the data generated in the tip rub impact tests for validating a predictive numerical model of the test set-up using explicit finite element analysis. To this end, a finite element model of the rotor rig inclusive of a rotor with two blades and the static frame structure is developed and analyzed using an explicit LS-DYNA solver. This model is calibrated with the test results of the three blade designs described above. In particular, it has been shown that the frequency contents of the measured dynamic strain responses agree quite well with frequencies obtained from the numerically computed responses. It has been found in the experimental responses that a given blade vibrates with two main frequencies: one corresponding to the first natural frequency of the rotor-blade system during the tip-rubbing phase (which lasts until the blade tip is in contact with the rub element which is a sector of the circular casing), and another corresponding to the first natural frequency of the blade when it vibrates freely without its tip being in contact with the rub-liner of the casing. A shortcoming of the current modeling approach is its inability to realistically represent the damping behaviors observed in the tests. For reasons of computational efficiency and consistent with the fact that there was no perceptible damage in the tested blades, an elastic constitutive behavior is specified for the blades, while the sacrificial PVC rub-liner is assumed to behave elasto-plastically. A limited study has also been carried out by assigning an elasto-plastic constitutive model to one of the blades previously represented with elastic properties only, and although incipient yielding is observed in a highly localized region at the tip of a blade (which can also be a numerical artifact), the responses under the two material behavior considerations (i.e. elastic and elasto-plastic) are found to be nearly same. Finally, this validated modeling approach is applied to the study of blades of ten distinct geometric profiles (including the three configurations already considered) at a speed of 800 rpm and the resonant speed of a given blade. Comparisons are made between the relevant responses (such as time-histories of root strain, shaft torque, blade axial displacement, bearing load and rub force) of nine blades with airfoil cross-sections (leaving aside the results for the first blade of rectangular cross-section which is only of academic interest). Based on this study, of all the blade designs, it has been found that the curve-stacked airfoils exhibit better ‘Rub-tolerant’ behavior. Both experimental and simulation results have predominantly proven the fact that adding curvature to a straight stacked blade through curve-stacked or bow result in reducing the rub induced vibration. While sweep and bow provide some aerodynamic advantages, they are not much helpful in containing the vibrations to a sustainable extent.
119

Structural Health Monitoring Of Composite Helicopter Rotor Blades

Pawar, Prashant M 05 1900 (has links)
Helicopter rotor system operates in a highly dynamic and unsteady aerodynamic environment leading to severe vibratory loads on the rotor system. Repeated exposure to these severe loading conditions can induce damage in the composite rotor blade which may lead to a catastrophic failure. Therefore, an interest in the structural health monitoring (SHM) of the composite rotor blades has grown markedly in recent years. Two important issues are addressed in this thesis; (1) structural modeling and aeroelastic analysis of the damaged rotor blade and (2) development of a model based rotor health monitoring system. The effect of matrix cracking, the first failure mode in composites, is studied in detail for a circular section beam, box-beam and two-cell airfoil section beam. Later, the effects of further progressive damages such as debonding/delamination and fiber breakage are considered for a two-cell airfoil section beam representing a stiff-inplane helicopter rotor blade. It is found that the stiffness decreases rapidly in the initial phase of matrix cracking but becomes almost constant later as matrix crack saturation is reached. Due to matrix cracking, the bending and torsion stiffness losses at the point of matrix crack saturation are about 6-12 percent and about 25-30 percent, respectively. Due to debonding/delamination, the bending and torsion stiffness losses are about 6-8 percent and about 40-45 percent after matrix crack saturation, respectively. The stiffness loss due to fiber breakage is very rapid and leads to the final failure of the blade. An aeroelastic analysis is performed for the damaged composite rotor in forward flight and the numerically simulated results are used to develop an online health monitoring system. For fault detection, the variations in rotating frequencies, tip bending and torsion response, blade root loads and strains along the blade due to damage are investigated. It is found that peak-to-peak values of blade response and loads provide a good global damage indicator and result in considerable data reduction. Also, the shear strain is a useful indicator to predict local damage. The structural health monitoring system is developed using the physics based models to detect and locate damage from simulated noisy rotor system data. A genetic fuzzy system (GFS) developed for solving the inverse problem of detecting damage from noise contaminated measurements by hybridizing the best features of fuzzy logic and genetic algorithms. Using the changes in structural measurements between the damaged and undamaged blade, a fuzzy system is generated and the rule-base and membership functions optimized by genetic algorithm. The GFS is demonstrated using frequency and mode shape based measurements for various beam type structures such as uniform cantilever beam, tapered beam and non-rotating helicopter blade. The GFS is further demonstrated for predicting the internal state of the composite structures using an example of a composite hollow circular beam with matrix cracking damage mode. Finally, the GFS is applied for online SHM of a rotor in forward flight. It is found that the GFS shows excellent robustness with noisy data, missing measurements and degrades gradually in the presence of faulty sensors/measurements. Furthermore, the GFS can be developed in an automated manner resulting in an optimal solution to the inverse problem of SHM. Finally, the stiffness degradation of the composite rotor blade is correlated to the life consumption of the rotor blade and issues related to damage prognosis are addressed.
120

Ausarbeitung eines Finite-Elemente-Simulationsmodells für die Belastungen beim Kuttern und Optimierung diverser Kuttermesser mit bionischen Strukturen: Ausarbeitung eines Finite-Elemente-Simulationsmodellsfür die Belastungen beim Kuttern und Optimierung diverser Kuttermesser mit bionischen Strukturen

Morgenstern, Martin 08 May 2014 (has links)
In der fleischverarbeitenden Industrie gibt es eine Vielzahl von Schneidwerkzeugen. Kuttermesser stehen hierbei in der Prozesskette weit hinten und haben einen direkten Einfluss auf die Qualität des Endprodukts. Der Prozess des Kutterns ist bislang nicht komplett analytisch geklärt. Während des Vorgangs durchläuft das Schneidgut (i.A. das Fleisch bzw. das Brät) wechselnde Aggregatzustände von fester (leicht gefrorener) Form hin zum zähviskosen Zustand. Weiterhin ist es permanentem korrosiven Kontakt ausgesetzt. Die Komplexität macht eine analytische Herangehensweise äußerst aufwendig, sodass sich mittels der FEM durch numerisches Vorgehen und Lastannahmen aus Untersuchungen diesem Problem gewidmet wird. Dabei sind bislang nicht bekannte Potentiale zu erkennen. Hierbei wurden verschiedene Vernetzungsstrategien (p- und h-Methode) der FEM angewandt und verglichen. Es sind dabei Materialreduktionen bis knapp 30% ersichtlich.

Page generated in 0.0451 seconds