• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 41
  • 18
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 244
  • 67
  • 62
  • 49
  • 40
  • 34
  • 34
  • 29
  • 27
  • 27
  • 25
  • 25
  • 23
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Women in Stage Combat: A Study on Babes With Blades Theatre Company

Whitaker, Macaela Carder 22 May 2015 (has links)
No description available.
122

The effectiveness of axial flow fans in a-frame plenums

Venter, Sarel Jacobus, Kroger, D. G. 03 1900 (has links)
Thesis (PhD (Mechanical and Mechatronic Engineering)--University of Stellenbosch, 1990. / 260 leaves printed single pages, preliminary pages i-xxi and numbered pages Chapter 1/1.1-1.3, Chapter 2/2.1-2.17, Chapter 3/3.1.1-3.10, Chapter 4/4.1-4.18, Chapter 5/5.1-5.3, References pages R.1-R.7, Appendix A pages A.1-A.34, Appendix B pages B.1-B.34, Appendix C pages C.1-C.26, Appendix D pages D.1-D.16, Appendix E pages E.1-E.30, Appendix F pages F.1-F.39. Includes bibliography, list of tables, figures and symbols. / Digitized at 600 dpi grayscale to pdf format (OCR), using a Bizhub 250 Konica Minolta Scanner. / ENGLISH ABSTRACT: The ultimate goal of this project is to ensure a better understanding of the governing mechanisms present when flow distorting components are installed in close proximity of an axial flow fan. The effect of different parameters on the operation of axial flow fans is investigated. These parameters are divided into flow enhancing and flow reduction effects. The performance of an axial flow fan can be enhanced by changing the tip clearance, by adding a solid disc to the hub of the fan or by varying the number of fan blades. Flow reductions are caused by components such as inlet grids, walkways and their supporting structures, heat exchangers and windwalls. The effects of flow enhancing components are measured and compared to the results of other authors. The sensitivity of these effects to parameters such as the type of fan rotor and the specific system in which the rotor is installed is highlighted. The system effect (the interaction between the fan rotor and flow resistances in close proximity of each other) of individual components, as well as the combination of different components, is predicted both theoretically and experimentally. These predictions are compared to measured data relevant to the components in an installation where the system effects are present. The results are correlated to the kinetic energy flux coefficient of the flow at different locations within the installation. Experimental data obtained from a full scale unit (inlet shroud diameter of 9,216 m) are used to compare to scaled data from the model (inlet shroud diameter of 1,542 m). The hub to tip ratio of the axial flow fans investigated is 0,15. The most important conclusions are that the performance of the type of axial flow fan under investigation can be improved by reducing its tip clearance and by installing a solid disc to the downstream side of the rotor. An increase in the number of blades of the fan leads to only marginal improvements in the fan performance. The overall performance of the system can also be improved by removing some of the flow resisting components, or by changing their relative positions. All these conclusions are based on the assumption that the power input to the fan rotor remains constant. / AFRIKAANSE OPSOMMING: Die uiteindelike doel van hierdie projek is om te verseker dat die beherende meganismes wat teenwoordig is wanneer vloeiversteurende komponente in die nabyheid van 'n aksiaalwaaier geinstalleer word, beter verstaan word. Die effek van verskillende parameters op die werkverrigting van aksiaalwaaiers word ondersoek. Hierdie parameters word verdeel in vloeiverbeterings- en vloeiverminderingseffekte. Die werkverrigting van 'n aksiaalwaaier kan verbeter word deur die lempuntspeling te verstel, deur 'n soliede skyf aan die naaf van die waaierrotor te installeer, of deur die aantal lemme te verander. Die vloeiverminderings word veroorsaak deur inlaatsiwwe, loopvlakke en hul ondersteuningsstrukture, warmteruilers en windwande. Die effekte van vloeiverbeteringskomponente word gemeet en vergelyk met die resultate van ander outeurs. Die sensitiwiteit van hierdie effekte op parameters soos die tipe rotor en die spesifieke stelsel waarin die rotor geinstalleer is, word uitgelig. Die stelseleffek (die interaksie tussen die rotor van die waaier en vloei weerstande wat naby mekaar geinstalleer is) van individuele, sowel as 'n kombinasie van verskillende komponente, word teoreties en eksperimenteel voorspel. Hierdie voorspellings word dan vergelyk met eksperimentele data wat van toepassing is op die komponente in 'n installasie waar stelseleffekte voorkom. Die resultate word gekoppel aan die kinetiese energievloedkoeffisient van die vloei by verskillende posisies binne die installasie. Eksperimentele data, verkry vanaf 'n volskaaleenheid (inlaatmondstukdiameter van 9,216 m), word met die geskaleerde data van die model (inlaatmondstukdiameter van 1,542 m) vcrgelyk. Die naaf- tot hulsverhouding van die aksiaalwaaiers wat ondersoek word is 0,15. Die belangrikste gevolgtrekkings is dat die werkverrigting van die tipe aksiaalwaaier wat ondersoek word verbeter kan word deur die lempuntspeling te verminder en deur 'n soliede skyf te installeer by die stroomaf kant van die rotor. 'n Toename in die aantal lemme van die waaier lei slegs tot marginale verbeterings in die werkverrigting van die waaier. Die totale werkverrigting van die stesel kan ook verbeter word deur sommige vloeiweerstandskomponente te verwyder, of deur hulle relatiewe posisies te verander. Al hierdie gevolgtrekkings is gebasseer op die aanname dat die drywingsinset na die waaierrotor konstant bly.
123

Optimisation of shot peening for 12Cr steel in steam turbine blade applications

Newby, Mark January 2013 (has links)
Power generation in thermal stations typically relies on large steam turbines. The corrosion resistant steel blades used in the last stage of a typical low pressure rotor set are approximately 1m long and experience high centrifugal loading during service. They operate in a wet steam environment, at approximately 60°C while rotating at 3000rpm, and failure modes include high and low cycle fatigue, stress corrosion cracking or corrosion fatigue. The blades are retained by a fir tree root which is normally shot-peened to generate compressive residual stresses that resist crack initiation. Finite element (FE) modelling has indicated that, in the absence of shot-peening, stresses above yield are induced at the fir tree root during operation. In a shot-peened blade these lead to relaxation of the shot peening residual stresses. To date, no systematic information has been obtained on the level of residual stresses induced in the fir tree by shot-peening and their subsequent relaxation during service loading, nor are there any guidelines as to the magnitude of residual stresses necessary to ensure integrity of the turbine over a life span of at least twenty years. At least one of these blades has suffered catastrophic failure in recent years causing severe damage, in excess of €100M, to the turbine-generator set on a South African power station [1]. This thesis reports results from a comprehensive program of residual stress measurements at the shot-peened fir tree roots of service blades, and in specimens that simulate the root conditions, using diffraction data from laboratory and synchrotron X-ray radiation (SXRD). Shot-peening coverage between 75% and 200% was used and stresses were measured over a depth of 5mm into the blades/specimens. Measurements were made in the as-peened condition and after applying cyclic stresses representative of overspeed proof testing and of service operation. The results were used to calibrate FE modelling of residual stresses and as input into fatigue life prediction.
124

Process development for investment casting of thin-walled components : Manufacturing of light weight components

Raza, Mohsin January 2015 (has links)
Manufacturing processes are getting more and more complex with increasing demands of advanced and light weight engineering components, especially in aerospace industry. The global requirements on lower fuel consumption and emissions are increasing the demands in lowering weight of cast components. Ability to produce components in lower wall thickness will not only help to reduce the cost of production but also help to improve the efficiency of engineering systems resulting in lower fuel consumption and lesser environmental hazardous emissions. In order to produce thin-walled components, understanding of mechanism behind fluidity as it is effected by casting parameters is very important. Similarly, for complex components study of solidification morphology and its effects on castability is important to understand. The aim of this work was to investigate casting of thin-walled test geometries (less than 2mm) in aero-space grades of alloys. The casting trials were performed to investigate the fluidity as a function of casting parameters and filling system in thin-walled sections. Test geometries with different thickness were cast and evaluated in terms of filled area with respect to casting parameters, ı.e. casting temperature and shell preheat temperature. Different feeding systems were investigated to evaluate effects of filling mode on castability. Similarly for complex components where geometries are very organic in shape, solidification morphology effects the quality of castings. Process parameters, that effect the solidification morphology were identified and evaluated. In order to develop a relation between defect formation and process parameters, solidification behaviour was investigated using simulations and casting trials. Similarly the effect of factors that influence grain structure and flow related defects were studied. It was observed that fluidity is affected by the mode of geometry filling in investment casting process. The filling mode also have different effect on defect formation. A top-gated configuration is strongly affected by casting parameters where as a bottom-gated configuration is more stable and thus fluidity is not significantly affected by variation in casting parameters. Less porosity and flow-related defects were observed in the bottom-gated system as compared to top-gated system. In the study about casting defects as affected by process parameters, it was observed that shell thickness is important to avoid interdendritic shrinkage. It was observed that the increased shell thickness induces a steeper thermal gradient which is essential in order to minimize the width of the mushy zone. It was also observed that a slower cooling rate along with a steeper thermal gradient at the metal-mould interface not only helps to avoid shrinkage porosity but also increases fill-ability in thinner sections. The work presented here is focused on the optimization of process parameters, in order, for instance, to improve castability and reduce the casting defects in investment casting process. The work, however, does not focus on externally influencing the casting conditions or modifying the casting/manufacturing process. The future work towards PhD will be focused on externally improving the casting conditions and investigating other possible route of manufacturing for thin, complex components.
125

Development of an integrated computational tool for design and analysis of composite turbine blades under ocean current loading

Unknown Date (has links)
A computational tool has been developed by integrating National Renewable Energy Laboratory (NREL) codes, Sandia National Laboratories' NuMAD, and ANSYS to investigate a horizontal axis composite ocean current turbine. The study focused on the design, analysis, and life prediction of composite blade considering random ocean current, cyclic rotation, and hurricane-driven ocean current. A structural model for a horizontal axis FAU research OCT blade was developed. Following NREL codes were used: PreCom, BModes, ModeShape, AeroDyn and FAST. PreComp was used to compute section properties of the OCT blade. BModes and ModeShape calculated the mode shapes of the blade. Hydrodynamic loading on the OCT blade was calculated by modifying the inputs to AeroDyn and FAST. These codes were then used to obtain the dynamic response of the blade, including blade tip displacement, normal force (FN) and tangential force (FT), flap and edge bending moment distribution with respect to blade rotation. / by Fang Zhou. / Thesis (Ph.D.)--Florida Atlantic University, 2013. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
126

Atenuação de vibrações em pás de helicópteros utilizando circuito piezelétrico semi-passivo / Vibration attenuation in helicopter blades using semi-passive piezoelectric circuit

Anicézio, Marcela de Melo 02 March 2015 (has links)
O uso de materiais inteligentes em problemas de controle de vibração tem sido investigado em diversas pesquisas ao longo dos últimos anos. Apesar de que diferentes materiais inteligentes estão disponíveis, o piezelétrico tem recebido grande atenção devido à facilidade de uso como sensores, atuadores, ou ambos simultaneamente. As principais técnicas de controle usando materiais piezoelétricos são os ativos e passivos. Circuitos piezelétricos passivos são ajustados para uma frequência específica e, portanto, a largura de banda efetiva é pequena. Embora os sistemas ativos possam apresentar um bom desempenho no controle de vibração, a quantidade de energia externa e hardware adicionado são questões importantes. As técnicas SSD (Synchronized Switch Damping) foram desenvolvidas como uma alternativa aos controladores passivos e controladores ativos de vibração. Elas podem ser técnicas semi-ativas ou semi-passivas que introduzem um tratamento não linear na tensão elétrica proveniente do material piezelétrico e induz um aumento na conversão de energia mecânica para energia elétrica e, consequentemente, um aumento no efeito de amortecimento. Neste trabalho, o controle piezoelétrico semi-passivo de uma pá piezelétrica engastada é apresentado e comparado com outros controladores. O modelo não linear electromecânico de uma pá com piezocerâmicas incorporados é determinado com base no método variacional-assintótico (VAM). O sistema rotativo acoplado não linear é resolvido no domínio do tempo, utilizando um método de integração alfa-generalizado afim de garantir a estabilidade numérica. As simulações são realizadas para uma vasta gama de velocidades de rotação. Em primeiro lugar, um conjunto de resistências (variando desde a condição de curto-circuito para a condição de circuito aberto) é considerada. O efeito da resistência ótima (que resulta em máximo amortecimento) sobre o comportamento do sistema é investigado para o aumento da velocidade de rotação. Mais tarde, a técnica SSDS é utilizada para amortecer as oscilações da pá com o aumento da velocidade de rotação. Os resultados mostram que a técnica SSDS pode ser um método útil para o controle de vibrações de vigas rotativas não lineares, tais como pás de helicóptero. / The use of smart materials in vibration control problems has been investigated in several researches over the last years. Although dierent smart materials are available, the piezoelectric one has received great attention due to ease of use as sensors, actuators, or both. The main control techniques using piezoelectric materials are the active and passive ones. Passive piezoelectric networks are adjusted for specic target frequencies and, therefore, the eective bandwidth of such systems is small. Although active systems can achieve good vibration control performance, the amount of external power and added hardware are important issues. The synchronized switch damping (SSD) technique was developed in order to address the issues of passive damping methodologies as well as the issues of active control systems. The SSD can be classied as semi-passive technique or semi-active technique that introduce the nonlinear treatment of the piezoelectric element voltage output and induce an increase in mechanical to electrical energy conversion and, consequently, the shunt damping eect. In this work, the semi-passive piezoelectric control of a rotating cantilever beam response is presented and compared with other controllers. The nonlinear electromechanical model of a rotating beam with embedded piezoceramics is derived based on the variational-asymptotic method (VAM). The coupled non-linear rotary system is solved in the time-domain by using a generalized-alpha integration method in order to guarantee numerical stability. The simulations are performed for a wide range of rotating speeds. First, a set of load resistances (ranging from short circuit condition to open circuit condition) is considered. The eect of optimum load resistance (for maximum damping) on the elastic behavior of the beam is investigated for increasing rotating speed. Later, the synchronized switch damping on short (SSDS) technique is employed to damp the nonlinear oscillations of the rotating beam with increasing rotating speed. Results show that the SSDS technique can be a useful method of control for nonlinear rotating beams such as helicopter blades.
127

Reliability-based fatigue design of marine current turbine rotor blades

Unknown Date (has links)
by Shaun Hurley. / Thesis (M.S.C.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web. / The study presents a reliability-based fatigue life prediction model for the ocean current turbine rotor blades. The numerically simulated bending moment ranges based on the measured current velocities off the Southeast coast line of Florida over a one month period are used to reflect the short-term distribution of the bending moment ranges for an idealized marine current turbine rotor blade. The 2-parameter Weibull distribution is used to fit the short-term distribution and then used to obtain the long-term distribution over the design life. The long-term distribution is then used to determine the number of cycles for any given bending moment range. The published laboratory test data in the form of an ε-N curve is used in conjunction with the long-term distribution of the bending moment ranges in the prediction of the fatigue failure of the rotor blade using Miner's rule. The first-order reliability method is used in order to determine the reliability index for a given section modulus over a given design life. The results of reliability analysis are then used to calibrate the partial safety factors for load and resistance.
128

Fluid mechanics and heat transfer in the blade channels of a water-cooled gas turbine.

El-Masri, Maher Aziz January 1979 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1979. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERONAUTICS. / Vita. / Includes bibliographical references. / Ph.D.
129

Marine propeller blade tip flows

Greeley, David Scott January 1982 (has links)
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1982. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 144-148. / by David Scott Greeley. / Ph.D.
130

Unsteady three-dimensional flow in a compressor cascade with inlet flow distortions

Farokhi, Saeed January 1981 (has links)
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1981. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND AERO / Includes bibliographical references. / by Saeed Farokhi. / Ph.D.

Page generated in 0.0601 seconds