• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 92
  • 41
  • 18
  • 10
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 244
  • 67
  • 62
  • 49
  • 40
  • 34
  • 34
  • 29
  • 27
  • 27
  • 25
  • 25
  • 23
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Using Data Analytics to Determine Best Practices for Winter Maintenance Operations

Crow, Mallory Joyce January 2017 (has links)
No description available.
162

Experimental studies in a supersonic through-flow fan blade cascade

Chesnakas, Christopher J. 12 October 2005 (has links)
An investigation has been performed of the flow in a supersonic through-flow fan blade cascade. The blade shapes are those of the baseline supersonic through-flow fan (STFF) under investigation at the NASA Lewis Research Center. Measurements were made at an inlet Mach number of 2.36 over a 15° range of incidence. Flowfield wave patterns were recorded using spark shadowgraph photography and steady-state instrumentation was used to measure blade surface pressure distributions and downstream total and static pressure distributions. A two-dimensional LDV system was used to map the downstream flowfield. From these measurements, the integrated loss coefficients are presented as a function of incidence angle along with analysis indicating the source of losses in the STFF cascade. The results are compared with calculations made using a two-dimensional, cell-centered, finite-volume, Navier-Stokes code with upwind options. Good general agreement is found at design conditions, with lesser agreement at off-design conditions. Analysis of the leading edge shock shows that the leading edge radius is a major source of losses in STFF blades. Losses from the leading edge bluntness are convected downstream into the blade wake, and are difficult to distinguish from viscous losses. Shock losses are estimated to account for 70% to 80% of the losses in the STFF cascade. / Ph. D.
163

Experimental and numerical investigation of transonic turbine cascade flow

Kiss, Tibor 02 February 2007 (has links)
A comprehensive study of the flowfield through a two-dimensional cascade of the high pressure turbine blades of a jet engine is presented. The main interest is the measurement and prediction of the mass-averaged total pressure losses. Other experiments, such as flow visualization, are aimed at the validation of the code that was used to obtain the numerical results and also to further knowledge about the details of the loss generation. The experimental studies were carried out on a cascade of eleven blades in a blow-down tunnel. Total pressure measurements were taken upstream of the cascade and also by traversing on downstream planes. The static pressures needed for the mass averaging and the probe bow shock correction were obtained by pressure taps on the cascade tunnel side wall. The static pressure was also measured on the surface of some instrumented blades. Shadowgraph pictures were taken for study of the trailing edge shock structure and for the turbulent transition location. A single-plate interferometer technique was used for density field measurements. The major goal of the numerical studies was the prediction of the mass-averaged total pressure losses, but all other measured quantities were also generated from the computed flowfield. A critical issue was the generation of a proper grid. For the studied type of flow, a non-periodic C-type grid turned out to be the most advantageous. For use in the moderately compressible attached turbulent boundary layer, a Clauser-type eddy viscosity model was developed and tested. In the trailing edge and wake region, the Baldwin-Lomax model was used. Good agreement of calculations and measurements was obtained for the blade surface and cascade tunnel side wall static pressures, the trailing edge shock structure, and the density field. The agreement between the measured and calculated total pressure drop profiles was not quite as good; however, that quantity is known to be difficult to predict accurately. The mass-averaged total pressure loss coefficient, calculated from the total pressure drop profiles, was again in good agreement with the measurements. The difference between the measured and computed total pressure drop profiles suggested that the Baldwin-Lomax model underpredicted the eddy viscosity in the trailing edge region. / Ph. D.
164

Cascade performance of double circular arc compressor blades at high angles of attack

Tkacik, Peter T. January 1982 (has links)
The design of a cascade wind tunnel for testing of compressor blades at high angle of attack is described. Methods to insure uniform velocity profiles and control of inlet turbulence are discussed. The problem of maintaining two-dimensional flows at high angle of attack was addressed. A tunnel capable of testing cascades of compressor blades at angles of attack up to seventy-five degrees was constructed. Performance of the tunnel was evaluated and data were acquired for flow over double-circular-arc blades with angles of attack extending into the fully-stalled region. Comparisons were made with available data in the installed flow regime. Results showed that the tunnel had adequately uniform inlet velocities and low turbulence levels, and that two-dimensional flow was maintained over the center two-thirds of the high-aspect ratio blades. / Master of Science
165

Vibrations of an isolated wind turbine blade using the finite element method

Flood, Robert C. January 1986 (has links)
The finite element method is applied to an isolated and twisted wind turbine blade which is rotating in a vertical plane to determine its structural dynamic characteristics. The equations of motion are formulated for a rotating beam with flap and lead-lag degrees of freedom subjected to nonsymmetric bending. Using a variational approach, a blade finite clement is developed from these equations of motion. Additionally, expressions are formulated for the elastic strain energy and kinetic energy of a rotating wind turbine blade. Lagrange's equation is applied to these energy expressions and an isoparametric finite element based on three dimensional elasticity and quadratic interpolation functions is developed. Both sets of finite element equations are implemented in a general purpose computer program to solve the structural dynamics eigenvalue problem and results compare favorably with published data for the cases of a nontwisted cantilevered beam both at rest and while rotating. A blade finite element model of a 10KW horizontal axis wind turbine blade is presented and its lowest modes of vibration are calculated for the cases of the blade at rest and in operation at rotor speeds up to 250 RPM. / M.S.
166

An experimental method for the investigation of subsonic stall flutter in gas turbine engine fans and compressors

Copenhaver, William Ward January 1978 (has links)
A facility for the investigation of stall flutter in aircraft engine compressors and fans was designed. Stall flutter was achieved in the test fan and verified through sonic and photographic methods. The frequency components of the sonic output during flutter were determined using a real-time analyzer. This frequency analysis indicated a dominant peak within 7 percent of the theoretical torsional natural frequency of the blades. Photographs taken during stall flutter indicated the presence of an interblade phase angle. The effect of blade stagger angle, flow incidence angle and solidity on flutter speed was determined. / Master of Science
167

Tip clearance and angle of attack effects upon the unsteady response of a vibrating flat plate in crossflow

Lewis, Daniel Russell 11 June 2009 (has links)
The influence of tip clearance and angle of attack upon the mid-span unsteady pressure response of a vibrating flat plate was investigated experimentally. Unsteady pressure measurements were taken for a variety of incidence angles, vibration frequencies and tip clearances over a Mach number range of 0.2 to 0.6. It was found that changes in tip clearance had an effect on measured pressure fluctuations at higher angles of attack and larger Mach numbers. It was also observed that the amplitude of the unsteady pressure increased as the incidence angle was increased. The plate was mechanically induced to oscillate in translation, simulating the flISt bending mode. Averaged Fast Fourier Transforms were used to determine pressure oscillation amplitudes and phase lags with respect to the plate motion. / Master of Science
168

An experimental investigation of turbine blade tip heat transfer and tip gap flows in the supersonic regime

Yang, Timothy T. 11 July 2009 (has links)
Gas turbine blade tip heat transfer and tip gap flow phenomena has been explored experimentally in a stationary cascade for blade exit Mach numbers = 1.2 to 1.4. Experimental results were found to agree well with qualitative predictions performed at GE Aircraft Engines. The pressure distribution in the blade tip cavity of a grooved tip blade was found to vary little with either Mach number or tip gap height. The tip cavity pressure was, however, a strong function of location. The tip cavity pressure distribution coupled with the pressure side distribution near the tip was speculated to drive the leakage flow across the blade tip from mid-chord aft based on surface flow visualization studies using an oil/dye mixture. Heat flux on the tip cavity floor was successfully measured using a thin-film Heat Flux Microsensor. Results of these measurements are consistent with previous studies in the subsonic regime. The convection coefficients on the tip cavity floor were found to be three times those found on the suction side airfoil surface near the trailing edge. Convection coefficients were found not to vary with either tip gap height or Mach number. The fluctuating component of heat flux was found to be at least 25% of the total heat flux. / Master of Science
169

Fluid flow and heat transfer in transonic turbine cascades

Janakiraman, S. V. 11 June 2009 (has links)
The aerodynamic and thermodynamic performance of an aircraft gas turbine directly affects the fuel consumption of the engine and the life of the turbine components. Hence, it is important to be able to understand and predict the fluid flow and heat transfer in turbine blades to enable the modifications and improvements in the design process. The use of numerical experiments for the above purposes is becoming increasingly common. The present thesis is involved with the development of a flow solver for turbine flow and heat transfer computations. A 3-D Navier-Stokes code, the Moore Elliptic Flow Program (MEFP) is used to calculate steady flow and heat transfer in turbine rotor cascades. Successful calculations were performed on two different rotor profiles using a one-equation q-L transitional turbulence model. A series of programs was developed for the post-processing of the output from the flow solver. The calculations revealed details of the flow including boundary layer development, trailing edge shocks, flow transition and stagnation and peak heat transfer rates. The calculated pressure distributions, losses, transition ranges, boundary layer parameters and peak heat transfer rates to the blade are compared with the available experimental data. The comparisons indicate that the q-L transitional turbulence model is successful in predicting flows in transonic turbine blade rows. The results also indicate that the calculated loss levels are independent of the gridding used while the heat transfer rate predictions improve with finer grids. / Master of Science
170

Mechanical behavior and damage mechanisms of woven graphite-polyimide composite materials

Wagnecz, Linda 21 July 2010 (has links)
The behavior of 8-harness satin woven Celion 3000/PMR-15 graphite-polyimide was experimentally investigated. Unnotched and center-notched specimens from (0)₁₅, (0)₂₂, and (0,45,0, - 45,0,0, - 45,0,45,0)₂ laminates were tested. Material properties were measured and damage development documented under monotonic tension, sustained incremental tension, and tension-tension fatigue loading. Damage evaluation techniques included stiffness monitoring, penetrant-enhanced X-ray radiography, laminate deply, and residual strength measurement. Material properties of the woven graphite-polyimide were comparable to those of woven graphite-epoxy. Damage development in woven graphite-polyimide was quite different than in non-woven graphite-epoxy. Matrix cracking was denser and delamination less extensive in the graphite-polyimide material system, and as a result, increases in notched residual tensile strength were much lower. A ply level failure theory was used to successfully predict the notched tensile strength of the (0,45,0, - 45,0,0, - 45,0,45,0)₂ laminate based on experimental data from the (0)₂₂ laminate. A simple method was used to simulate fatigue damage in a (0)₂₂ notched specimen to predict residual strength as a function of fatigue life. The advantages and disadvantages of the ply level failure theory used in this study are discussed. / Master of Science

Page generated in 0.0381 seconds