• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 13
  • 3
  • 1
  • 1
  • Tagged with
  • 32
  • 11
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Stable Isotopes and Metabolite Profiles as Physiological Markers for the Drought Stress Sensitivity in Douglas-Fir Provenances (Pseudotsuga menziesii (MIRB.) FRANCO)

Jansen, Kirstin 17 December 2018 (has links)
In Mitteleuropa werden zukünftig häufigere Trocken- und Hitzeperioden mit wirtschaftlichen Einbußen in der Waldwirtschaft erwartet. Die Douglasie (Pseudotsuga menziesii (Mirb.) Franco) wird als Alternative für die wirtschaftlich bedeutsame, jedoch trockenheitsempfindliche Fichte diskutiert (Picea abies (L.) H.Karst.). Zwei Unterarten, die Küsten- (FDC) und die Inlandsdouglasie (FDI), sind im ausgedehnten natürlichen Verbreitungsgebiet in Nordamerika beheimatet, welches ein großes Potenzial für die Auswahl produktiver und trockenresistenter Herkünfte bietet. Unser Ziel war, die Trockenreaktion verschiedener Douglasienherkünfte unter Verknüpfung morphologischer und physiologischer Parameter und die der Trockenheitsresistenz bzw. -empfindlichkeit zugrundeliegenden Mechanismen zu erforschen. Ein Herkunftsversuch in Südwestdeutschland ermöglichte die Untersuchung 50-jähriger Douglasien verschiedener Herkünfte entlang eines Höhengradienten. Unter kontrollierten Bedingungen simulierten wir die Effekte einer Hitzewelle auf Jungbäume zweier Provenienzen. Wir analysierten die Kohlenstoff- und Sauerstoff-Stabilisotopenzusammensetzung, den Gaswechsel der Blätter, Veränderungen im Stoffwechsel und das Baumwachstum. Unsere Ergebnisse zeigen bei FDC aus humiden Regionen hohe Wachstumseinbußen unter Trockenheit und moderat bis stark verringerte stomatäre Leitfähigkeit, unterstützt durch Photoprotektion. FDC aus Regionen mit starker Sommertrockenheit reagierten kaum mit Stomataschluss und Wachstumseinbußen auf Trockenheit, jedoch mit starker Osmoregulation und Monoterpen-Emissionen, welche zur Trockenresistenz beitragen könnten. FDI aus einer ariden Region zeigten hohe An, geringes Wachstum und stark antioxidative und photoprotektive Mechanismen. Die Herkünfte unterscheiden sich stark in ihrer Trockenreaktion und ihren Schutzmechanismen. Der Anbau trockenresistenter Herkünfte wird an Standorten von Vorteil sein, für die eine Häufung von ariden Sommerperioden vorhergesagt wird. / In Central Europe, more frequent periods of dry and hot weather are expected in the future with economic losses in the forestry sector. Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is discussed as a timber species alternative to the economically important but drought-sensitive spruce (Picea abies (L.) H. Karst.). Two subspecies, the coastal (FDC) and the interior Douglas-fir (FDI), are native to an extensive natural range in North America, offering a great potential for the selection of productive and drought tolerant provenances. Our goal was to investigate the drought response of different Douglas-fir provenances on the morphological and physiological level, as well as the mechanisms underlying drought resistance or susceptibility. A provenance trial in southwestern Germany established in 1958 allowed the study of 50-year-old Douglas-fir trees of diverse provenances along a height gradient. Under controlled conditions, we simulated the effects of a heat wave on young trees of two provenances. We analyzed carbon and oxygen stable isotopic composition, leaf gas exchange, changes in metabolism and tree growth. FDC from humid regions responded to drought with strong growth decline and a medium to strong stomatal closure, supported by enhanced instantaneous photoprotection. FDC from regions with very dry summer conditions showed a small growth decline and anisohydric regulation of stomatal conductance under drought, supported by high levels of osmotic adjustment. High monoterpene emissions might contribute to the drought resistance. FDI from an arid region showed high assimilation rates, low growth potential and a high antioxidant, photoprotective, drought and heat protective potential. The provenances differ greatly in their dry reaction and their protective mechanisms. The cultivation of drought resistant crops will be beneficial at sites predicted to accumulate arid summer periods.
32

Variation und Vererbung von Glucosinolatgehalt und muster in Grünmasse und Samen von Raps (Brassica napus L.) und deren Zusammenhang zum Befall mit Rapsstängelschädlingen / Variation and inheritance of glucosinolate content and composition in green matter and seeds of oilseed rape (Brassica napus L.) and their relation to infestation with specialized rape stem weevils

Brandes, Haiko 05 February 2015 (has links)
Raps (Brassica napus L.) ist heute die drittwichtigste Ölfrucht weltweit. Einer der Hauptgründe für die große Anbaubedeutung liegt in der Züchtung von Sorten mit niedrigem Gehalt an Glucosinolaten (GSL) im Samen, welche die Koppelnutzung des Öls und des Rapskuchens in der Tierfütterung möglich machte. GSL sind schwefelhaltige, sekundäre Pflanzeninhaltsstoffe und ein Charakteristikum der Familie der Kreuzblütler, zu der Raps zählt. Die Funktion der GSL in der Pflanze wird zusammen mit dem sie abbauenden Enzym Myrosinase als konstitutiver Abwehrmechanismus gegenüber unspezifischen Fraßfeinden gesehen, dem sogenannten Glucosinolat-Myrosinase System. Raps wird aber auch von Schädlingen befallen, die speziell nur Kreuzblütler als Wirtspflanzen akzeptieren. Bei einigen spezialisierten Schädlingsarten der Kreuzblütler konnte gezeigt werden, dass GSL oder ihre Abbauprodukte einen Einfluss auf das Verhalten bei der Wirtspflanzenwahl, bei der Eiablage oder beim Fraß haben können. Es besteht also die Möglichkeit, dass über GSL in der Grünmasse eine quantitative Resistenz gegenüber Schadinsekten vermittelt wird und die genetische Variation von GSL im Rapsgenpool eine natürliche Resistenzquelle darstellt. Jedoch ist die Vererbung der GSL in Blatt und Stängel im Gegensatz zu den GSL im Samen wenig untersucht. Die Zielsetzung dieser Arbeit bestand daher einerseits in der Evaluierung von GSL-Gehalten und -mustern als potentielle Resistenzfaktoren gegenüber den spezialisierten Rapsschädlingen „Großer Rapsstängelrüssler“ (Ceutorhynchus napi) und „Gefleckter Kohltriebrüssler“ (Ceutorhynchus pallidactylus) und andererseits in einer genetischen Analyse der GSL-Gehalte in Blatt und Stängel. Dazu wurden dreijährige Feldversuche an vier Standorten durchgeführt, in denen 28 genetisch sehr unterschiedliche Genotypen, darunter 15 Rapsresynthesen und 13 ältere und neuere Zuchtsorten hinsichtlich der Variation von GSL-Gehalten und –Zusammensetzungen in Grünmasse und Samen und deren Anfälligkeit gegenüber den beiden Rapsstängelschädlingen evaluiert wurden. Die Daten des Schädlingsbefalls wurden in der Abteilung Agrarentomologie erhoben und entstammen der parallel durchgeführten Dissertation von Schäfer-Kösterke (2015). Um die Selektionsmöglichkeiten auf unterschiedliche GSL-Gehalte in Samen und Grünmasse zu eruieren, wurde die Vererbung von GSL in einem weiteren Experiment mit Hilfe einer DH-Population untersucht. Die Hauptfrage dieser QTL-Kartierung war, inwieweit am GSL-Stoffwechsel beteiligte Genomregionen sich zwischen Stängeln, Blättern und Samen unterscheiden. In der Auswertung der Versuchsserie zur Variation der GSL konnte für die elf identifizierte GSL eine große genetische Variation mit hohen Heritabilitäten festgestellt werden. Als großer Einflussfaktor auf die GSL-Gehalte der Genotypen erwies sich das Entwicklungsstadium der Pflanzen: Die über 28 Genotypen gemittelten GSL-Gesamtgehalte in der Grünmasse nahmen vom ersten Probenahmetermin von 18 µmol im Schossen zum zweiten auf 4 µmol bei Blühbeginn ab. Weiterhin hatten Samen im Mittel der Genotypen um 47 µmol höhere GSL-Gehalte als die Grünmasse, und Stängel um ca. 3 µmol höhere Gehalte als Blätter. Auch die mittlere GSL-Zusammensetzung der Genotypen unterschied sich deutlich zwischen Samen und Grünmasse, jedoch nicht zwischen den zwei Probenahmeterminen. Zusätzlich hatten Standort und Jahr einen Einfluss, wobei in den Jahren 2012 und 2013 die Standorteffekte größer als die der Jahre waren. Zwischen den Pflanzenteilen Blatt und Stängel bestand eine hohe Korrelation von 0,96 für den GSL-Gesamtgehalt. Zwischen Samen und Grünmasse war die Beziehung für die GSL-Gesamtgehalte mit 0,60 weniger deutlich und für die Gruppe der indolischen GSL mit 0,14 nicht mehr vorhanden. Die komplexe zeitliche und räumliche Verteilung der GSL innerhalb der Pflanze wird im Zusammenhang mit der Bedeutung von Transportprozessen diskutiert. Bei der Untersuchung der Beziehung zwischen dem Befall durch Stängelschädlinge und GSL stellte sich heraus, dass der natürliche Schädlingsdruck im Freiland mit durchschnittlich 2,6 Rapsstängelrüsslerlarven pro Pflanze und 2,8 Kohltriebrüsslerlarven pro Pflanze sehr niedrig war. Daher konnte eine Differenzierung der Genotypen im Rapsstängelrüsslerbefall nur an einem Standort in den Jahren 2012 und 2013 statistisch abgesichert werden. Für den Kohltriebrüsslerbefall gab es an keinem Standort statistisch absicherbare, genotypische Unterschiede. In den beiden ausgewerteten Umwelten zeigten sich keine signifikanten Beziehungen zwischen GSL-Gesamtgehalt, Alkenyl-GSL, Indol-GSL oder den elf einzelnen GSL und dem Befall mit Rapsstängelrüsslerlarven pro Pflanze. Hauptkomponentenanalysen und Vergleiche zwischen unter-schiedlich stark befallenen Gruppen von Genotypen ließen ebenfalls nicht auf lineare Zusammenhänge zwischen GSL-Gehalten oder -Zusammensetzungen und der Wirtspflanzenpräferenz des Rapsstängelrüsslers oder auch des Stängelfraßes der Larven schließen. Allerdings fiel die Resynthese S30 in beiden ausgewerteten Umwelten durch eine niedrige Anzahl an Rapsstängelrüssler-larven und einen niedrigen Anteil Minierfraß auf. GSL-Zusammensetzung und GSL-Gesamtgehalt von S30 zeigten jedoch keine Besonderheiten. Für die Kartierung von am GSL-Stoffwechsel beteiligten Quantitative Trait Loci (QTL) wurden GSL in Blatt, Stängel und Samen von 120 DH-Linien der DH-Population ‚L16 x Express‘ untersucht. Die beiden Populationseltern L16 und Express unterscheiden sich nicht nur durch unterschiedliche GSL-Gesamtgehalte im Samen (L16 59,0 µmol vs. Express 26,4 µmol) und in der Grünmasse (L16 1,1 µmol vs. Express 6,2 µmol), sondern auch in der relativen Zusammensetzung von Alkenyl- und Indol-GSL (L16 31 % Indol-GSL vs. Express 10 % Indol-GSL). Die über zwei Orte gemittelten GSL-Gehalte der Population waren zum Knospenstadium in der Grünmasse mit 5,4 µmol in Stängeln und 3,7 µmol in Blättern sehr niedrig, zur Reife in den Samen mit 48,6 µmol jedoch hoch. Die Heritabilitäten der Merkmale mit signifikanter genotypischer Variation lagen im Stängel zwischen 0,64 und 0,86, im Blatt zwischen 0,55 und 0,89 und im Samen zwischen 0,70 und 0,98. Die Korrelationen der GSL-Gesamtgehalte zwischen Blatt und Stängel lag bei 0,95, diejenige zwischen Stängel (Blatt) und Samen bei 0,52 (0,53). Die erstellte Kopplungskarte enthielt 4003 SNP-Marker, deren 19 Kopplungsgruppen 2050 centiMorgan abdeckten. Der mittlere Abstand zwischen zwei Markern lag bei 2 cM. Es wurden insgesamt 115 QTL gefunden von denen 49 QTL für die GSL-Gehalte im Samen, 35 QTL für die Gehalte im Stängel und 31 QTL für die Gehalte im Blatt verantwortlich waren. Für aliphatische GSL zeigten sich drei Hauptregionen auf den Kopplungsgruppen A03, C02 und C09. Während auf A03 und C09 QTL aus allen Pflanzenteilen lokalisiert wurden, regulierten die QTL auf C02 spezifisch die Gehalte im Samen. Für Indol GSL-Gehalte von Blatt und Stängel existierten zwei Hauptregionen auf den Kopplungs-gruppen A02 und C07, welche von denen im Samen (auf A03, C02 und C05) getrennt lokalisiert waren. Die Ergebnisse zeigen, dass 1) die Akkumulation von aliphatischen und indolischen GSL durch gentrennte Genomregionen gesteuert wurde, 2) GSL-Gehalte in Blatt und Stängel durch identische Genomregionen kontrolliert wurden und 3) die GSL-Akkumulation im Samen teils von den gleichen Regionen des Genoms wie in Blatt und Stängel, teils aber auch durch für Samen spezifische Genomregionen reguliert wurde.

Page generated in 0.0348 seconds