Spelling suggestions: "subject:"blob detection"" "subject:"blob 1detection""
1 |
Movement and Force Measurement Systems as a Foundation for Biomimetic Research on InsectsMills, Clayton Harry January 2008 (has links)
During the undertaken research and development, two major systems were designed. These were; a prototype force sensor, and a movement measurement system. Both the developed systems were designed for the intended field of insect research, but were developed using very different underlying principles. The force measurement system uses the piezo-electric effect induced in piezo-electric bimorph elements to produce a measure of force exerted on the sensor. The movement measurement system on the other hand uses computer vision (CV) techniques to find and track the three dimensional (3D) position of markers on the insect, and thereby record the pose of the insect.
To further increase the usefulness of the two measurement systems, a prototype graphical user interface (GUI) was produced to encapsulate the functionality of the systems and provide an end user with a more complete and functional research tool. The GUI allows a user to easily define the parameters required for the CV operations and presents the results of these operations to the user in an easily understood visual format. The GUI is also intended to display force measurements in a graphical means to make them easily interpreted. The GUI has been named Weta Evaluation Tracking and Analysis (WETA).
Testing on the developed prototype force sensor shows that the piezo-electric bimorph elements provide an adequate measure of force exerted on them, when the voltage signal produced by an element is integrated. Furthermore, the testing showed that the developed force sensor layout produces an adequate measure of forces in the two horizontal linear degrees of freedom (DOF), but the prototype did not produce a good measure of forces
in the vertical linear DOF.
Development and testing of the movement measurement system showed that stereo vision techniques have the ability to produce accurate measurements of 3D position using two cameras. Although, when testing these techniques with one of the cameras replaced by a mirror, the system produced less than satisfactory results. Further testing on the feature detection and tracking portions of the movement system showed that even though these systems were implemented in a relatively simple way, they were still adequate in their associated operations. However, it was found that with some simple changes in colour spaces used during feature detection, the performance of the feature detection system in varying illumination was greatly improved. The tracking system on the other hand, operated adequately using just its associated basic principles.
During the development of both prototype measurement systems, a number of conclusions were formulated that indicated areas of future development. These areas include; advanced force sensor configurations, force sensor miniaturisation, design of a force plate, improvement of feature detection and tracking, and refining of the stereo vision equipment.
|
2 |
Counting of Mostly Static People in Indoor ConditionsKhemlani, Amit A 09 November 2004 (has links)
The ability to count people from video is a challenging problem. The scientific challenge arises from the fact that although the task is pretty well defined, the imaging scenario is not well constrained. The background scene is uncontrolled. Lighting is complex and varying. And, image resolution, both in terms of spatial and temporal is usually poor, especially in pre-stored surveillance videos. Passive counting of people from video has many practical applications such as in monitoring the number of people sitting in front of a TV set, counting people in an elevator, counting people passing through a security door, and counting people in a mall. This has led to some research in automated counting of people. The context of most of the work in people counting is in counting pedestrians in outdoor settings or moving subjects in indoor settings. There is little work done in counting of people who are not moving around and very little work done in people counting that can handle harsh variations in illumination conditions. In this thesis, we explore a design that handles such issues at pixel level using photometry based normalization and at feature level by exploiting spatiotemporal coherence that is present in the change seen in the video.
We have worked on home and laboratory dataset. The home dataset has subjects watching television and the laboratory dataset has subjects working. The design of the people counter is based on video data that is temporally sparsely sampled at 15 seconds of time difference between consecutive frames. Specific computer vision methods used involves image intensity normalization, frame to frame differencing, motion accumulation using autoregressive model and grouping in spatio-temporal volume. The experimental results show: The algorithm is less susceptible to lighting changes. Given an empty scene with just lighting change it usually produces a count of zero. It can count in varying illumination conditions. It can count people even if they are partially visible. Counts are generated for any moving objects in the scene. It does not yet try to distinguish between humans and non-humans. Counting errors are concentrated around frames with large motion events, such as a person moving out from a scene.
|
3 |
Small Blob Detection in Medical ImagesJanuary 2015 (has links)
abstract: Recent advances in medical imaging technology have greatly enhanced imaging based diagnosis which requires computational effective and accurate algorithms to process the images (e.g., measure the objects) for quantitative assessment. In this dissertation, one type of imaging objects is of interest: small blobs. Example small blob objects are cells in histopathology images, small breast lesions in ultrasound images, glomeruli in kidney MR images etc. This problem is particularly challenging because the small blobs often have inhomogeneous intensity distribution and indistinct boundary against the background.
This research develops a generalized four-phased system for small blob detections. The system includes (1) raw image transformation, (2) Hessian pre-segmentation, (3) feature extraction and (4) unsupervised clustering for post-pruning. First, detecting blobs from 2D images is studied where a Hessian-based Laplacian of Gaussian (HLoG) detector is proposed. Using the scale space theory as foundation, the image is smoothed via LoG. Hessian analysis is then launched to identify the single optimal scale based on which a pre-segmentation is conducted. Novel Regional features are extracted from pre-segmented blob candidates and fed to Variational Bayesian Gaussian Mixture Models (VBGMM) for post pruning. Sixteen cell histology images and two hundred cell fluorescent images are tested to demonstrate the performances of HLoG. Next, as an extension, Hessian-based Difference of Gaussians (HDoG) is proposed which is capable to identify the small blobs from 3D images. Specifically, kidney glomeruli segmentation from 3D MRI (6 rats, 3 humans) is investigated. The experimental results show that HDoG has the potential to automatically detect glomeruli, enabling new measurements of renal microstructures and pathology in preclinical and clinical studies. Realizing the computation time is a key factor impacting the clinical adoption, the last phase of this research is to investigate the data reduction technique for VBGMM in HDoG to handle large-scale datasets. A new coreset algorithm is developed for variational Bayesian mixture models. Using the same MRI dataset, it is observed that the four-phased system with coreset-VBGMM has similar performance as using the full dataset but about 20 times faster. / Dissertation/Thesis / Doctoral Dissertation Industrial Engineering 2015
|
4 |
Head Rotation Detection in Marmoset MonkeysJanuary 2014 (has links)
abstract: Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys.
Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection.
The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per second. In comparison, the natural alert signal - door opening and closing - evoked the faster head turns than other stimulus conditions. These results suggest that behaviorally relevant stimulus such as alert signals evoke faster head-turn responses in marmoset monkeys. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
|
5 |
Insulator Fault Detection using Image ProcessingBanerjee, Abhik 01 February 2019 (has links)
This thesis aims to present a method for detection of faults (burn marks) on insulator using only image processing algorithms. It is accomplished by extracting the insulator from the background image and then detecting the burn marks on the segmented image. Apart from several other challenges encountered during the detection phase, the main challenge was to eliminate the connector marks which might be detected as burn-marks. The technique discussed in this thesis work is one of a kind and not much research has been done in areas of burn mark detection on the insulator surface. Several algorithms have been pondered upon before coming up with a set of algorithms applied in a particular manner.
The first phase of the work emphasizes on detection of the insulator from the image. Apart from pre-processing and other segmentation techniques, Symmetry detection and adaptive GrabCut are the main algorithms used for this purpose. Efficient and powerful algorithms such as feature detection and matching were considered before arriving at this method, based on pros and cons.
The second phase is the detection of burn marks on the extracted image while eliminating the connector marks. Algorithms such as Blob detection and Contour detection, adapted in a particular manner, have been used for this purpose based on references from medical image processing. The elimination of connector marks is obtained by applying a set of mathematical calculations.
The entire project is implemented in Visual Studio using OpenCV libraries. Result obtained is cross-validated across an image data set.
|
6 |
Machine learning for blob detection in high-resolution 3D microscopy imagesTer Haak, Martin January 2018 (has links)
The aim of blob detection is to find regions in a digital image that differ from their surroundings with respect to properties like intensity or shape. Bio-image analysis is a common application where blobs can denote regions of interest that have been stained with a fluorescent dye. In image-based in situ sequencing for ribonucleic acid (RNA) for example, the blobs are local intensity maxima (i.e. bright spots) corresponding to the locations of specific RNA nucleobases in cells. Traditional methods of blob detection rely on simple image processing steps that must be guided by the user. The problem is that the user must seek the optimal parameters for each step which are often specific to that image and cannot be generalised to other images. Moreover, some of the existing tools are not suitable for the scale of the microscopy images that are often in very high resolution and 3D. Machine learning (ML) is a collection of techniques that give computers the ability to ”learn” from data. To eliminate the dependence on user parameters, the idea is applying ML to learn the definition of a blob from labelled images. The research question is therefore how ML can be effectively used to perform the blob detection. A blob detector is proposed that first extracts a set of relevant and nonredundant image features, then classifies pixels as blobs and finally uses a clustering algorithm to split up connected blobs. The detector works out-of-core, meaning it can process images that do not fit in memory, by dividing the images into chunks. Results prove the feasibility of this blob detector and show that it can compete with other popular software for blob detection. But unlike other tools, the proposed blob detector does not require parameter tuning, making it easier to use and more reliable. / Syftet med blobdetektion är att hitta regioner i en digital bild som skiljer sig från omgivningen med avseende på egenskaper som intensitet eller form. Biologisk bildanalys är en vanlig tillämpning där blobbar kan beteckna intresseregioner som har färgats in med ett fluorescerande färgämne. Vid bildbaserad in situ-sekvensering för ribonukleinsyra (RNA) är blobbarna lokala intensitetsmaxima (dvs ljusa fläckar) motsvarande platserna för specifika RNA-nukleobaser i celler. Traditionella metoder för blob-detektering bygger på enkla bildbehandlingssteg som måste vägledas av användaren. Problemet är att användaren måste hitta optimala parametrar för varje steg som ofta är specifika för just den bilden och som inte kan generaliseras till andra bilder. Dessutom är några av de befintliga verktygen inte lämpliga för storleken på mikroskopibilderna som ofta är i mycket hög upplösning och 3D. Maskininlärning (ML) är en samling tekniker som ger datorer möjlighet att “lära sig” från data. För att eliminera beroendet av användarparametrar, är tanken att tillämpa ML för att lära sig definitionen av en blob från uppmärkta bilder. Forskningsfrågan är därför hur ML effektivt kan användas för att utföra blobdetektion. En blobdetekteringsalgoritm föreslås som först extraherar en uppsättning relevanta och icke-överflödiga bildegenskaper, klassificerar sedan pixlar som blobbar och använder slutligen en klustringsalgoritm för att dela upp sammansatta blobbar. Detekteringsalgoritmen fungerar utanför kärnan, vilket innebär att det kan bearbeta bilder som inte får plats i minnet genom att dela upp bilderna i mindre delar. Resultatet visar att detekteringsalgoritmen är genomförbar och visar att den kan konkurrera med andra populära programvaror för blobdetektion. Men i motsats till andra verktyg behöver den föreslagna detekteringsalgoritmen inte justering av sina parametrar, vilket gör den lättare att använda och mer tillförlitlig.
|
7 |
Object detection algorithms analysis and implementation for augmented reality system / Objecktų aptikimo algoritmai, jų analizė ir pritaikymas papildytosios realybės sistemojeZavistanavičiūtė, Rasa 05 November 2013 (has links)
Object detection is the initial step in any image analysis procedure and is essential for the performance of object recognition and augmented reality systems. Research concerning the detection of edges and blobs is particularly rich and many algorithms or methods have been proposed in the literature. This master‟s thesis presents 4 most common blob and edge detectors, proposes method for detected numbers separation and describes the experimental setup and results of object detection and detected numbers separation performance. Finally, we determine which detector demonstrates the best results for mobile augmented reality system. / Objektų aptikimas yra pagrindinis žingsnis vaizdų analizės procese ir yra pagrindinis veiksnys apibrėžiantis našumą objektų atpažinimo ir papildytosios realybės sistemose. Literatūroje gausu metodų ir algoritmų aprašančių sričių ir ribų aptikimą. Šiame magistro laipsnio darbe aprašomi 4 dažniausiai naudojami sričių ir ribų aptikimo algoritmai, pasiūlomas metodas aptiktų skaičių atskyrimo problemai išspręsti. Pateikiami atliktų eksperimentų rezultatai, palyginmas šių algoritmų našumas. Galiausiai yra nustatoma, kuris iš jų yra geriausias.
|
8 |
Development and Implementation of Star Tracker Electronics / Utveckling och implementering av elektronik för en stjärnkameraLindh, Marcus January 2014 (has links)
Star trackers are essential instruments commonly used on satellites. They provide precise measurement of the orientation of a satellite and are part of the attitude control system. For cubesats star trackers need to be small, consume low power and preferably cheap to manufacture. In this thesis work the electronics for a miniature star tracker has been developed. A star detection algorithm has been implemented in hardware logic, tested and verified. A platform for continued work is presented and future improvements of the current implementation are discussed. / Stjärnkameror är vanligt förekommande instrument på satelliter. De tillhandahåller information om satellitens orientering med mycket hög precision och är en viktig del i satellitens reglersystem. För kubsatelliter måste dessa vara små, strömsnåla och helst billiga att tillverka. I detta examensarbete har elektroniken för en sådan stjärnkamera utvecklats. En algoritm som detekterar stjärnor har implementerats i hårdvara, testats och verifierats. En hårdvaruplattform som fortsatt arbete kan utgå ifrån har skapats och förslag på förbättringar diskuteras.
|
9 |
Scale Selection Properties of Generalized Scale-Space Interest Point DetectorsLindeberg, Tony January 2013 (has links)
Scale-invariant interest points have found several highly successful applications in computer vision, in particular for image-based matching and recognition. This paper presents a theoretical analysis of the scale selection properties of a generalized framework for detecting interest points from scale-space features presented in Lindeberg (Int. J. Comput. Vis. 2010, under revision) and comprising: an enriched set of differential interest operators at a fixed scale including the Laplacian operator, the determinant of the Hessian, the new Hessian feature strength measures I and II and the rescaled level curve curvature operator, as well as an enriched set of scale selection mechanisms including scale selection based on local extrema over scale, complementary post-smoothing after the computation of non-linear differential invariants and scale selection based on weighted averaging of scale values along feature trajectories over scale. A theoretical analysis of the sensitivity to affine image deformations is presented, and it is shown that the scale estimates obtained from the determinant of the Hessian operator are affine covariant for an anisotropic Gaussian blob model. Among the other purely second-order operators, the Hessian feature strength measure I has the lowest sensitivity to non-uniform scaling transformations, followed by the Laplacian operator and the Hessian feature strength measure II. The predictions from this theoretical analysis agree with experimental results of the repeatability properties of the different interest point detectors under affine and perspective transformations of real image data. A number of less complete results are derived for the level curve curvature operator. / <p>QC 20121003</p> / Image descriptors and scale-space theory for spatial and spatio-temporal recognition
|
10 |
Discrete Scale-Space Theory and the Scale-Space Primal SketchLindeberg, Tony January 1991 (has links)
This thesis, within the subfield of computer science known as computer vision, deals with the use of scale-space analysis in early low-level processing of visual information. The main contributions comprise the following five subjects: The formulation of a scale-space theory for discrete signals. Previously, the scale-space concept has been expressed for continuous signals only. We propose that the canonical way to construct a scale-space for discrete signals is by convolution with a kernel called the discrete analogue of the Gaussian kernel, or equivalently by solving a semi-discretized version of the diffusion equation. Both the one-dimensional and two-dimensional cases are covered. An extensive analysis of discrete smoothing kernels is carried out for one-dimensional signals and the discrete scale-space properties of the most common discretizations to the continuous theory are analysed. A representation, called the scale-space primal sketch, which gives a formal description of the hierarchical relations between structures at different levels of scale. It is aimed at making information in the scale-space representation explicit. We give a theory for its construction and an algorithm for computing it. A theory for extracting significant image structures and determining the scales of these structures from this representation in a solely bottom-up data-driven way. Examples demonstrating how such qualitative information extracted from the scale-space primal sketch can be used for guiding and simplifying other early visual processes. Applications are given to edge detection, histogram analysis and classification based on local features. Among other possible applications one can mention perceptual grouping, texture analysis, stereo matching, model matching and motion. A detailed theoretical analysis of the evolution properties of critical points and blobs in scale-space, comprising drift velocity estimates under scale-space smoothing, a classification of the possible types of generic events at bifurcation situations and estimates of how the number of local extrema in a signal can be expected to decrease as function of the scale parameter. For two-dimensional signals the generic bifurcation events are annihilations and creations of extremum-saddle point pairs. Interpreted in terms of blobs, these transitions correspond to annihilations, merges, splits and creations. Experiments on different types of real imagery demonstrate that the proposed theory gives perceptually intuitive results. / <p>QC 20120119</p>
|
Page generated in 0.2349 seconds