• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 961
  • 324
  • 236
  • 138
  • 133
  • 59
  • 40
  • 35
  • 27
  • 26
  • 22
  • 14
  • 13
  • 12
  • 10
  • Tagged with
  • 2408
  • 340
  • 218
  • 183
  • 141
  • 126
  • 122
  • 115
  • 115
  • 111
  • 109
  • 107
  • 107
  • 107
  • 100
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Development of catalytic stamp lithography for nanoscale patterning of organic monolayers

Mizuno, Hidenori 06 1900 (has links)
Nanoscale patterning of organic molecules has received considerable attention in current nanoscience for a broad range of technological applications. In order to provide a viable approach, this thesis describes catalytic stamp lithography, a novel soft-lithographic process that can easily produce sub-100 nm patterns of organic monolayers on surfaces. Catalytic stamps were fabricated through a two-step procedure in which the nanoscale patterns of transition metal catalysts are first produced on SiOx/Si surfaces via the use of self-assembled block-copolymers, followed by the production of the poly(dimethylsiloxane) (PDMS) stamps on top of the as-patterned metals. Simply peeling off the as-formed PDMS stamps removes the metallic nanostructures, leading to the functional stamps. A number of different patterns with various metals were produced from a commercially available family of block copolymers, polystyrene-block-poly-2-vinylpyridine, by controlling the morphology of thin-film templates through the modulation of molecular weights of polymer blocks or solvent vapor annealing. Using these catalytic stamps, hydrosilylation-based catalytic stamp lithography was first demonstrated. When terminal alkenes, alkynes, or aldehydes were utilized as molecular inks, the metallic (Pt or Pd) nanopatterns on catalytic stamps were translated into corresponding molecular arrays on H-terminated Si(111) or Si(100) surfaces. Since localized catalytic hydrosilylations took place exclusively underneath the patterned metallic nanostructures, the pattern formations were not affected by ink diffusion and stamp deformation even at the sub-20 nm scale, while maintaining the advantages of the stamp-based patterning (i.e., large-area, high-throughput capabilities, and low-cost). The concept of catalytic stamp lithography was further extended with other catalytic reactions, and successful nanoscale patterning was performed using hydrogenation (on azide-terminated SiOx surfaces) and the Heck reaction (on alkene- or bromphenyl-terminated SiOx surfaces). A range of nanopatterned surfaces with different chemical functionalities, including thiol, amine, and acid, were created, and they were further modified through appropriate chemical reactions. The potential utility of this simple approach for the construction of a higher degree of nanoarchitectures was suggested.
332

On the modeling of time-varying delays

Shah, Chirag Laxmikant 30 September 2004 (has links)
This thesis is an effort to develop generalized dynamic models for systems with time-varying time delays. Unlike the simple time-delay model characterized by a transportation lag in the case of a fixed time delay, time-varying delays exhibit quite different characteristics, making the development of easy to use models a difficult endeavor. First an algorithm is developed to predict the actual input-output behavior when the input signal is directly fed into a device that characterizes the time-varying delay. Input-output behaviour generated with this algorithm serves as the truth model for subsequent approximate model development. Simulation results for different classes of delay and different inputs were obtained using the truth model. The input functions were limited to steps, ramps and sinusoids. This limited class of inputs and delays defines the scope of this thesis and the results are to be interpreted as such. The methodology adopted to identify the basic underpinnings of models was system identification where input-output data came from the truth model. Models for the aforementioned classes of inputs and delays were then derived using elementary system identification tools. These models were then carefully analyzed to extract trends by changing the delay parameter. A satisfactory trend was observed in the case of linearly varying time delay. A generalized model for the linearly varying time delay with step and polynomial inputs was developed. An attempt was also made at developing a generalized model for sinusoidally time-varying time delays. This study proposes a model for linearly time-varying time delay, whose structure is not surprisingly also dependent on the class of inputs. It is shown that the derived model reduces to the well known model in the case of a fixed delay.
333

Metallo-supramolecular block copolymers : from synthesis to smart nanomaterials

Guillet, Pierre 08 July 2008 (has links)
Supramolecular copolymers have become of increasing interest in recent years for the search of new materials with tunable properties. In particular, metallo-supramolecular block copolymers have seen important progresses since the last five years. In this thesis, a library of metallo-supramolecular amphiphilic block copolymers containing a hydrophilic block, linked to a hydrophobic block, through a metal-ligand complex has been investigated. The micelles formed in water from these copolymers were characterized by AFM and TEM and exhibited a different behavior compared to their covalent counterpart. Furthermore, a novel strategy to control the formation of amphiphilic brushes from metallo-supramolecular block copolymers has been developed. Starting from a heteroleptic block copolymer, the initial low molecular weight counterions were exchanged for polymeric ones, leading to the formation of complex architectures. Another part of this thesis is dedicated to the use of metal-ligand interactions located at the extremity of micelles. Since ligands are located at the extremity of the coronal chains, they are available for complexation with metal ions. The effect of the addition of various metal ions to this system was studied in the dilute regime by dynamic light scattering, and different situations have been observed depending on the metal-to-ligand ratio and to the nature of the metal ions. In more concentrated solutions, a second hierarchical level is reached leading to the formation of a micellar gel, due to the formation of intermicellar bridges. Rheological measurements revealed that the characteristic behavior of those gels critically depends on the added metal ions. Finally, the self-assembly of a metallo-supramolecular block copolymer in thin films was investigated. Due to the presence of the charged complex at the junction of the two blocks, this copolymer could be considered as a triblock with a highly immiscible block that effects the orientation of the cylindrical microdomains and the lateral ordering.
334

Adaption och subversion : Återbruk, mening och nonsens i Block av Ulf Karl Olov Nilsson

Hellman Vold, Anne January 2008 (has links)
The Swedish contemporary poet Ulf Karl Olov Nilsson (UKON) creates his poems by recycling and manipulating existing material. Though the overall opinion of his work has been positive, the idea that experimental poetry focus shape on the expense of content has led critics to either interpret the nonsensical and absurd aspects of UKON’s poetics as a consequence of the technical methods he uses to create his poetry, or to look beyond the nonsensical and absurd aspects to focus the fact that the poems creates meaning at all. The poems of UKON’s sixth collection of poems, Block (2005), differ from each other in many ways: some poems are lists and other revolves around a person – their content and construction vary and they can hardly be read as an expression of one persons thought. Still, the homogenous visual form creates a sense of uniformity – all the poems are shaped like blocks in different sizes, it has no page numbers and no names has been given the individual poems. By focusing the nonsensical and absurd aspects of UKON’s collection Block, and at the same time read the poetry through the light of the poetic context that UKON is connected to, this essays shows that UKON destroys and creates meaning in a way that is similar to the techniques used by the Victorian nonsense literature. As the Victorian nonsense literature make use of the language’s grammatical rules and genres to give the nonsense text a structure, UKON stages a reciprocal action between making use of and exceeding the conventional use of different language-contexts (e.g. erotic language or expressions such as “one must…”). Thus, the nonsensical aspects of UKON’s poetry are exposed as a consequent course of action to create and destroy meaning and Block can be read as a way to disclose how the language creates and maintains cultural clichés.
335

Multi-Scale Molecular Modeling of Phase Behavior and Microstructure in Complex Polymeric Mixtures with Nanoparticles

Feng, Zhengzheng 05 June 2013 (has links)
The phase behaviors and microstructures of various realistic and model mixtures of macro and micro molecules, such as polyolefin solutions and nanoparticle block copolymer composites, have been accurately predicted by the application of Statistical Associating Fluid Theory (SAFT) based approaches through various extensions that improve both the physical description of molecular interactions and efficiency of computations. The extensions are presented in a generic sense that is applicable to other studies. These rigorously derived theories have been demonstrated to capture material structure-property relationships and can be applied broadly to other fields including biology, medicine and energy industry. On the phenomenogical scale, the novel SAFT-Dimer equation of state has been extended to study the liquid-liquid phase boundary (cloud point) in polyolefin solutions. A simplified model of the polyolefin molecules has been followed and the effect of various parameters, such as temperature, molecular weight, solvent quality and comonomer content, on the phase behavior has been successfully captured by the theoretical model through comparison with experimental measurements. The presented approach requires less parameters than previous methods and is of critical value to the industrial productions of polymers, especially polyolefins with long branches. On the molecular scale, the interfacial SAFT (iSAFT) Density Functional Theory (DFT) has been extended to include a dispersion free energy functional that explicitly accounts for molecular correlations. The Order-Disorder Transition (ODT) between lamellar and disordered phase has then been investigated for pure block copolymer and copolymer nanocomposite systems. The extension has been shown to dramatically improve the ODT predictions of iSAFT as well as the self assembled microstructures in nanocomposites over previous DFT calculations, in comparison to coarse grained molecular simulations. The behavior of the equilibrium spacing of ordered structures is also examined against the variation of copolymer size and interactions. An efficient numerical scheme, Fast Fourier Transform (FFT), has been implemented and shown to drastically increase the computation efficiency. The theory has then been extended to study block copolymer morphologies with density variations in multiple dimensions. Comprehensive phase diagrams including lamellar, cylindrical and disordered phases have been obtained for copolymer nanocomposites for the first time using a single framework molecular theory. In addition, the nanoparticle induced morphological transition between cylindrical and lamellar phase has been studied using a pseudo arc-length continuation method. Transition evolution is tracked and metastable morphologies are examined and compared with existing experimental reports and theoretical calculations. With these extensions, iSAFT offers a powerful prediction tool that closely relates molecular structure to thermophysical properties and provides an efficient alternative to screen parameter space for specified material properties.
336

Low-complexity iterative receivers for multiuser space-time block coding systems

Yang, Yajun 31 October 2006
Iterative processing has been shown to be very effective in multiuser space-time block coding (STBC) systems. The complexity and efficiency of an iterative receiver depend heavily on how the log-likelihood ratios (LLRs) of the coded bits are computed and exchanged at the receiver among its three major components, namely the multiuser detector, the maximum a posterior probability (MAP) demodulators and the MAP channel decoders. This thesis first presents a method to quantitatively measure the system complexities with floating-point operations (FLOPS) and a technique to evaluate the iterative receiver's convergence property based on mutual information and extrinsic information transfer (EXIT) charts.<p>Then, an integrated iterative receiver is developed by applying the sigma mappings for M-ary quadrature amplitude modulation (M-QAM) constellations. Due to the linear relationship between the coded bits and the transmitted channel symbol, the multiuser detector can work on the bit-level and hence improves the convergence property of the iterative receiver. It is shown that the integrated iterative receiver is an attractive candidate to replace the conventional receiver when a few receive antennas and a high-order M-QAM constellation are employed.<p> Finally, a more general two-loop iterative receiver is proposed by introducing an inner iteration loop between the MAP demodulators and the MAP convolutional decoders besides the outer iteration loop that involves the multiuser detection (MUD) as in the conventional iterative receiver. The proposed two-loop iterative receiver greatly improves the iteration efficiency. It is demonstrated that the proposed two-loop iterative receiver can achieve the same asymptotic performance as that of the conventional iterative receiver, but with much less outer-loop iterations.
337

Indelningsändringar : en studie om varför Norra Sandsjö kommun, Bringetofta församling och Norra Sandsjö församling delades i samband med att Sävsjö kommunblock bildades / Revised structures of municipality block

Danielsson, Anna-Karin January 2011 (has links)
This paper is about a new organization how to get smaller communities to join together and become much larger. The purpose is to find out why Norra Sandsjö community and Bringetofta and Norra Sandsjö parishes were separated when Sävsjö municipality block was formed. The purpose is further to find out what the councils of Norra Sandsjö, Nässjö and Sävsjö, the church council and the people who lived in the area thought about the decision that was made by the executive organization in this matter (länsstyrelsen in Jönköping). Voting was arranged amongst the people, who lived in the specific area that in the first inquiry was suggested to be connected with Nässjö municipality block. The source material gives the result of this voting and the opinions of Norra Sandsjö, Nässjö and Sävsjö communities in this question. The source material includes inquires made by the executive organization (länsstyrelsen) and records from the meetings of Nässjö, Sävsjö and Norra Sandsjö councils. The theory is based on the case to have enough proximity to a chief town within the municipality block. The question if the south part of Norra Sandsjö commune and parts of Bringetofta and Norra Sandsjö parishes was going to be connected with Sävsjö municipality block instead of Nässjö municipality block is about the question of proximity to a chief town.
338

Predicting Test Suite Effectiveness for Java Programs

Inozemtseva, Laura Michelle McLean January 2012 (has links)
The coverage of a test suite is often used as a proxy for its effectiveness. However, previous studies that investigated the influence of code coverage on test suite effectiveness have failed to reach a consensus about the nature and strength of the relationship between these test suite characteristics. Moreover, many of the studies were done with small or synthetic programs, making it unclear that their results generalize to larger programs. In addition, some of the studies did not account for the confounding influence of test suite size. We have extended these studies by evaluating the relationship between test suite size, block coverage, and effectiveness for large Java programs. Our test subjects were four Java programs from different application domains: Apache POI, HSQLDB, JFreeChart, and Joda Time. All four are actively developed open source programs; they range from 80,000 to 284,000 source lines of code. For each test subject, we generated between 5,000 and 7,000 test suites by randomly selecting test methods from the program's entire test suite. The suites ranged in size from 3 to 3,000 methods. We used the coverage tool Emma to measure the block coverage of each suite and the mutation testing tool Javalanche to evaluate the effectiveness of each suite. We found that there is a low correlation between block coverage and effectiveness when the number of tests in the suite is controlled for. This suggests that block coverage, while useful for identifying under-tested parts of a program, should not be used as a quality target because it is not a good indicator of test suite effectiveness.
339

Low-complexity iterative receivers for multiuser space-time block coding systems

Yang, Yajun 31 October 2006 (has links)
Iterative processing has been shown to be very effective in multiuser space-time block coding (STBC) systems. The complexity and efficiency of an iterative receiver depend heavily on how the log-likelihood ratios (LLRs) of the coded bits are computed and exchanged at the receiver among its three major components, namely the multiuser detector, the maximum a posterior probability (MAP) demodulators and the MAP channel decoders. This thesis first presents a method to quantitatively measure the system complexities with floating-point operations (FLOPS) and a technique to evaluate the iterative receiver's convergence property based on mutual information and extrinsic information transfer (EXIT) charts.<p>Then, an integrated iterative receiver is developed by applying the sigma mappings for M-ary quadrature amplitude modulation (M-QAM) constellations. Due to the linear relationship between the coded bits and the transmitted channel symbol, the multiuser detector can work on the bit-level and hence improves the convergence property of the iterative receiver. It is shown that the integrated iterative receiver is an attractive candidate to replace the conventional receiver when a few receive antennas and a high-order M-QAM constellation are employed.<p> Finally, a more general two-loop iterative receiver is proposed by introducing an inner iteration loop between the MAP demodulators and the MAP convolutional decoders besides the outer iteration loop that involves the multiuser detection (MUD) as in the conventional iterative receiver. The proposed two-loop iterative receiver greatly improves the iteration efficiency. It is demonstrated that the proposed two-loop iterative receiver can achieve the same asymptotic performance as that of the conventional iterative receiver, but with much less outer-loop iterations.
340

The Roles of Realistic Cardiac Structure in Conduction and Conduction Block: Studies of Novel Micropatterned Cardiac Cell Cultures

Badie, Nima January 2010 (has links)
<p>The role of cardiac tissue structure in both normal and abnormal impulse conduction has been extensively studied by researchers in cardiac electrophysiology. However, much is left unknown on how specific micro- and macroscopic structural features affect conduction and conduction block. Progress in this field is constrained by the inability to simultaneously assess intramural cardiac structure and function, as well as the intrinsic complexity and variability of intact tissue preparations. Cultured monolayers of cardiac cells, on the other hand, present a well-controlled in vitro model system that provides the necessary structural and functional simplifications to enable well-defined studies of electrical phenomena. In this thesis, I developed a novel, reproducible cell culture system that accurately replicates the realistic microstructure of cardiac tissues. This system was then applied to systematically explore the influence of natural structure (e.g. tissue boundaries, expansions, local fiber directions) on normal and arrhythmogenic electrical conduction.</p><p>Specifically, soft lithography techniques were used to design cell cultures based on microscopic DTMRI (diffusion tensor magnetic resonance imaging) measurements of fiber directions in murine ventricles. Protein micropatterns comprised of mosaics of square pixels with angled lines that followed in-plane cardiac fiber directions were created to control the adhesion and alignment of cardiac cells on a two-dimensional substrate. The high accuracy of cell alignment in the resulting micropatterned monolayers relative to the original DTMRI-measured fiber directions was validated using immunofluorescence and image processing techniques.</p><p>Using this novel model system, I first examined how specific structural features of murine ventricles influence basic electrical conduction. (1) Realistic ventricular tissue boundaries, either alone or with (2) microscopic fiber directions were micropatterned to distinguish their individual functional roles in action potential propagation. By optically mapping membrane potentials and applying low-rate pacing from multiple sites in culture, I found that ventricular tissue boundaries and fiber directions each shaped unique spatial patterns of impulse propagation and additively increased the spatial dispersion of conduction velocity.</p><p>To elucidate the roles that natural tissue structure play in arrhythmogenesis, I applied rapid-rate pacing from multiple sites in culture in an attempt to induce unidirectional conduction block remote from the pacing site--a precursor to reentry. The incidence of remote block was found to be highly dependent on the direction of wave propagation relative to the underlying tissue structure, and with a susceptibility that was synergistically increased by both realistic tissue boundaries and fiber directions. Furthermore, all instances of remote block in these micropatterned cultures occurred at the anterior and posterior junctions of the septum and right ventricular free wall. At these sites, rapid excitation yielded more abrupt conduction slowing and promoted wavefront-waveback interactions that ultimately evolved into transmural lines of conduction block. The location and shape of these lines of block was found to strongly correlate with the spatial distribution of the electrotonic source-load mismatches introduced by ventricular structures, such as tissue expansions and sharp turns in fiber direction.</p><p>In summary, the overall objective of the work described in this thesis was to reveal the distinct influences of realistic cardiac tissue structure on action potential conduction and conduction block by engineering neonatal rat cardiomyocyte monolayers that reproducibly replicated the anatomical details of murine ventricular cross-sections. In the future, this novel model system is expected to further our understanding of structure-function relationships in normal and structurally diseased hearts, and possibly enable the development of novel gene, cell, and ablation therapies for cardiac arrhythmias.</p> / Dissertation

Page generated in 0.0316 seconds