• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 174
  • 33
  • 29
  • 15
  • 12
  • 11
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 333
  • 333
  • 68
  • 63
  • 57
  • 54
  • 51
  • 51
  • 46
  • 40
  • 40
  • 35
  • 33
  • 32
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Block Copolymer-derived Porous Polyimides and Carbon for High-Performance Energy Storage

Guo, Dong 12 May 2022 (has links)
Block copolymer-derived nanoporous materials are featured with microstructures defined by the microphase separation of constituent blocks, enabling various applications in energy storage. Dictated by the molecular weights and volume fractions of constituent blocks, the microphase separation forms nanoscale microstructures of 1-100 nm. Selective removal of a sacrificial phase produces nanopores with tailored pore width, continuity, and tortuosity. The remaining phase customizes the properties of resulting nanoporous materials, including specific surface area, electrical conductivity/insulation, and mechanical performance. Therefore, block copolymer-derived porous materials are felicitous for use in high-performance energy storage. This dissertation presents the utilization of block copolymers to derive nanoporous materials: i) high-modulus polyimide separators for lithium-metal batteries, and ii) high-surface-area carbon electrodes for fast-charging zinc-ion batteries. In lithium-metal batteries, the dendritic growth of lithium leads to deteriorating performance and severe safety concerns. Suppressing lithium dendrites is imperative to guarantee both high performance and safe cycling. Mesoporous polyimide separators are promising for dendrite suppression: i) the mesopores are smaller than the width of lithium dendrites, preventing lithium dendrites from penetrating the separator. ii) The high-modulus polyimide ceases the growth of lithium dendrites. Herein, this dissertation reports a mesoporous polyimide separator produced by thermalizing polylactide-b-polyimide-b-polylactide at 280 °C. The mesoporous polyimide separator exhibits a median pore width of 21 nm and a storage modulus of 1.8 GPa. When serving as a dendrite-suppressing separator in lithium-metal batteries, the mesoporous polyimide separator enables safe cycling for 500 hours at a current density of 4 mA/cm2. In zinc-ion batteries, developing cathodes compatible with fast charging remains a challenge. Conventional MnO2 gravel cathodes suffer from low electrical conductivity and slow ion (de-)insertion, resulting in poor recharging performance. In this dissertation, porous carbon fiber (PCF) supported MnO2 (PCF@MnO2), comprising nanometer-thick MnO2 deposited on block copolymer-derived PCF, serves as a fast-charging cathode. The high electrical conductivity of PCF and fast ion (de-)insertion in nanometer-thick MnO2 both contribute to a high rate capability. The PCF@MnO2 cathode, with a MnO2 loading of 59.1 wt%, achieves a MnO2-based specific capacity of 326 and 184 mAh/g at a current density of 0.1 and 1.0 A/g, respectively. This dissertation investigates approaches to utilizing block copolymers-derived nanoporous materials for high-performance energy storage. Those approaches are envisaged to inspire the design of block copolymer-derived nanoporous materials, and advance the development of "beyond Li-ion" energy storage. / Doctor of Philosophy / When we talk with friends on mobile phones, accomplish works on laptops, drive back home and see family's smiling faces under lamplights, we must have noticed that our daily life significantly relies on electrical energy. Although being predominantly employed in today's rechargeable energy storage, lithium-ion batteries using graphite anodes have approached their theoretical energy limits. We are expecting better-performance batteries for a more convenient life: to fully charge our phones faster, to use our laptops for a longer time, and to drive our electric cars for a further distance. Lithium-metal batteries and aqueous zinc-ion batteries stand out for "beyond lithium-ion" energy storage because they deliver more energy and charge faster. The commercialization of lithium-metal batteries and zinc-ion batteries may benefit from revolutionary porous materials derived from block copolymers. On one hand, lithium-metal batteries employ metallic lithium anodes, storing about 10 times of energy compared to equal-weight graphite anodes and allowing faster charging rates. However, the lithium-metal anodes grow needle-shaped dendrites during cycling. Those lithium dendrites traverse the battery separator through its large pores, causing internal short circuits and even fire hazards. Suppressing lithium dendrites is imperative for safe lithium-metal batteries. Stiff separators with small pores can suppress lithium dendrites. The small pores prevent lithium dendrites from traversing, and the stiff separators cease the dendritic growth. This dissertation introduces a dendrite-suppressing separator derived from block copolymers comprising stiff polyimide blocks and vulnerable blocks. When those block copolymers form films, the vulnerable blocks spontaneously disperse as a network embedded in the polyimide. Then, the vulnerable blocks are removed at elevated temperatures to create interconnected small pores. This porous polyimide separator suppresses lithium dendrites to allow safe cycling for 500 hours, surpassing today's separators which encounter short circuits within 60 hours. On the other hand, zinc-ion batteries require fast-charging cathodes for high charging rates. A fast-charging cathode demands both good electrical conductivity and fast ion insertion. Herein, this dissertation reports a porous carbon fiber supported MnO2 cathode. The block copolymers comprise a polyacrylonitrile block and a vulnerable block. The vulnerable blocks form a network dispersing in the polyacrylonitrile fibers. At elevated temperatures, polyacrylonitrile is converted to graphitic carbon fibers, and the vulnerable network decomposes to create interconnected pores. The porous carbon fibers afford a large surface area, allowing a high loading of MnO2 to deposit as nanometer-thick sheaths. The resulting cathode combines good electrical conductivity of porous carbon fibers and the fast ion insertion in thin MnO2 sheaths, therefore, exhibiting superior fast-charging performance. This dissertation reports the methods of using block copolymers to produce porous materials for high-performance batteries. We envisage those methods to inspire the design of block copolymer-derived porous materials, and advance the development of high-performance energy storage for a more convenient life.
92

Synthesis and Characterization of Complex Polymer Topologies using Ring-Opening Metathesis Polymerization

Alaboalirat, Mohammed Ali 09 August 2022 (has links)
Bottlebrush polymers are intriguing topologies that have become more significant in various applications, including drug delivery, elastomers, photonic crystals, anti-fouling coatings, nanoporous materials, and electronic and transport substrates. Polymeric side chains are tightly grafted to a polymer backbone in these macromolecules. Bottlebrush polymers' densely bonded structure causes steric repulsion between nearby polymer chains, leading them to exhibit a chain-extended conformation. Even though these extraordinary macromolecules have several uses, the transformational promise of the bottlebrush polymer architecture has yet to be realized due to the difficulty in synthesizing large molecular weight bottlebrush polymers. This dissertation illustrates the ability of the optimized grafting-through strategy to create controlled supramolecular polymeric networks (SPNs) and different types of topologies, including block copolymers and tapered bottlebrush polymers. We show that the optimized synthesis of bottlebrush polymers using a direct-growth approach results in a controlled product and monomodal size exclusion chromatography (SEC) peaks. The optimization of the direct-growth approach depends on two factors: monomer type and percentage of monomer to polymer conversion in the reversible-deactivation radical polymerization (RDRP) step. Moreover, performing ring-opening metathesis polymerization (ROMP) initiated by Grubbs 3rd generation catalyst (G3) on a norbornene functionalized macromolecules allows for creating polymers with bulky side chains. This strategy was implemented to create methylated, acetylated, and native poly(β-cyclodextrin) that reached a degree of polymerization of 150 and molecular weights > 150 kg/mol. These results were 10-fold higher than the reported method using atom transfer radical polymerization (ATRP) with β-cyclodextrin functionalized with methacrylate group. Furthermore, multiple macromonomers were prepared using ATRP and photoiniferter polymerization that are functionalized with norbornene. These macromonomers were used in the following ROMP reaction to result in multiple series of amphiphilic bottlebrush block copolymers and tapered bottlebrush polymers. The surface tension measurements on the self-assembled amphiphilic bottlebrush block copolymer series in water revealed an ultralow critical micelle concentration (CMC), 1-2 orders of magnitude lower than its linear counterpart. Combined with coarse-grained molecular dynamics simulations, fitting small-angle neutron scattering traces (SANS) allowed us to evaluate solution conformations of micellar nanostructures for self-assembled macromolecules. Furthermore, the tapered bottlebrush polymer series SANS traces were collected to investigate their molecular arrangement in dilute solution. For the first time, summation scattering models describing both bottlebrush polymer shape and side chain polymer conformations were utilized. Using these models, we extracted physical parameters of the polymers, including bottlebrush radius and length as well as side chain excluded volume parameter and correlation length. / Doctor of Philosophy / Bottlebrush polymers are intriguing topologies that have become more significant in a variety of applications, including photonic crystals and nanoporous materials. In these macromolecules, polymeric side chains are densely grafted to a polymer backbone which causes steric repulsion between nearby polymer chains. However, even though these extraordinary macromolecules have several uses, the transformational promise of the bottlebrush polymer architecture has yet to be realized due to the difficulty in synthesizing large molecular weight bottlebrush polymers. This dissertation illustrates the ability of the optimized grafting-through strategy to create controlled supramolecular polymeric networks (SPNs) and different types of topologies, including block copolymers and tapered bottlebrush polymers. This dissertation shows that the optimized synthesis of bottlebrush polymers using direct-growth approach results in a controlled synthesis. The optimization of the direct-growth approach depends on two factors: monomer type and percentage of monomer to polymer conversion in creating the macromonomer step. In addition, performing ring-opening metathesis polymerization (ROMP) initiated by Grubbs 3rd generation catalyst on a norbornene functionalized macromolecules allows for creating polymers with bulky side chains. This strategy was implemented to create methylated, acetylated, and native poly(β-cyclodextrin) that reached a degree of polymerization of 150 and molecular weights > 150 kg/mol. Multiple macromonomers were prepared using ATRP and photoiniferter polymerization that are functionalized with norbornene. These macromonomers were used in the following ROMP reaction to result in multiple series of amphiphilic bottlebrush block copolymers and tapered bottlebrush polymers. The surface tension measurements on the self-assembled amphiphilic bottlebrush block copolymer series in water revealed an ultralow critical micelle concentration (CMC). In addition, fitting of small-angle neutron scattering traces (SANS) allowed us to evaluate solution conformations for micellar nanostructures for self-assembled macromolecules. Furthermore, the tapered bottlebrush polymer series SANS traces were collected to investigate their molecular arrangement in dilute solution. Finally, for the first time, models were used to extract physical parameters of the polymers, including bottlebrush radius and length as well as side chain excluded volume parameter and correlation length.
93

Liquid crystalline multi-block copolymers

Cooper, Kevin L. 22 May 2007 (has links)
Lyotropic and thermotropic high strength liquid crystalline polymers have become an important area of research and development in polymeric, high performance materials. These materials have afforded excellent high temperature stability and high strength in the oriented direction, but not in the transverse direction. Hence, "balancing" the properties in both directions is an important area of research. Segmented polymers composed of an amorphous, glassy engineering thermoplastic, and an anisotropic, liquid crystalline polymer were synthesized and investigated. The isotropic phase is based upon a ductile poly(arylene ether sulfone), while the anisotropic segment is based on a rigid poly(arylate) moiety. The difunctionally terminated, controlled molecular weight poly(sulfone) oligomers were synthesized via a nucleophilic aromatic substitution reaction. Functional end groups included phenolic, acetate and carboxyl. The structure and reactivity of these oligomers was characterized by analytical techniques, including FT-IR, NMR, and polymer physical characterization methods such as, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and thermal mechanical analysis (TMA), and dynamic mechanical thermal analysis (DMTA). The well characterized, difunctionally terminated poly(sulfone) oligomers were then utilized along with ester forming monomers in a subsequent melt acidolysis reaction to form segmented poly(sulfone)-poly(arylate) co- or terpolymers. Earlier work by Lambert (281-283) showed that solution and interfacial techniques could only be utilized to synthesize segmented polymers with low poly(arylate) contents. The melt acidolysis technique allowed the synthesis of poly(sulfone)- poly(arylate) polymers with poly(arylate) contents as high as 90 weight percent. Along with a high degree of agitation, the melt acidolysis technique utilized chlorobenzene as a solvent in the initial stage of the reaction to enhance the mixing of the poly(sulfone) oligomers and ester forming monomers, allowing true segmented polymers to be formed. This was proven by FT-IR and extraction studies, which determined that very little of the original poly(sulfone) oligomer was extracted by refluxing chloroform. The morphology of these polymers was studied by polarized optical microscopy, and wide angle X-ray scattering. Low weight fraction poly(arylate) co- and terpolymers were determined to be amorphous, while higher poly(arylate) weight fraction polymers (15 weight percent or greater) were found to be semi-crystalline or liquid crystalline. Thermal analysis (DSC) also gave evidence that these materials were semi-crystalline or liquid crystalline. Also, as the weight fraction of poly(arylate) was increased, a significant improvement in solvent resistance was observed as well as an improvement in the modulus and tensile strength. / Ph. D.
94

Novel Approaches To The Synthesis of Clicked Block Copolymers

Flack, Matthew Alexander 16 January 2011 (has links)
Block copolymers are widely used in both the academic and industrial communities due to their unique properties. With the development of living polymerization techniques, the synthesis of block copolymers with controlled molecular weights and unique architectures has reached an all time high. Here a novel approach to the synthesis of block copolymers, namely polystyrene-b-polyisoprene, using azide-alkyne click chemistry techniques is investigated. Both azido and alkyne-terminated polystyrene were synthesized using ATRP. Azido-terminated polystyrene was synthesized via a substitution reaction between NaN3 and bromo-terminated polystyrene. Alkyne-functionalized polystyrene was synthesized using propargyl 2-bromoisobutyrate as a functional initiator. ¹H NMR and SEC were used to analyze the degree of polymer functionalization. Anionic polymerization techniques were used to synthesize polyisoprene. Polyisoprenyl lithium was reacted with propylene oxide to obtain hydroxyl-terminated polyisoprene. Functionalization of ≥ 90% was demonstrated via flash column chromatography. The aforementioned hydroxyl-terminated polyisoprene was reacted with both 11-chloroundecanoyl bromide and 11-chloroundecanoyl chloride to synthesize halogen-terminated polyisoprene. As with polystyrene, a substitution reaction with NaN3 afforded azido-terminated polyisoprene. Alkyne-functionalized polystyrene was coupled with azido-terminated polyisoprene via click chemistry to create said block copolymers. The reactions were investigated using ¹H and ¹³C NMR, SEC, IR and in some cases TEM. The clicked block copolymers should provide precedent for the synthesis of supramolecular block copolymers. / Master of Science
95

Multiphase star-like copolymers containing lignin: synthesis, properties and applications

Oliveira, Willer de 28 July 2008 (has links)
Multiphase star-like copolymers containing lignin have been synthesized and characterized. All copolymers contained hydroxypropyl lignin (HPL) as the central core. Polycaprolactone (PCL), cellulose propionate (CP) or polystyrene (PS), served as radiating blocks attached to the lignin core in star-like manner. These materials were studied in relation to their structure, morphology, effect on crystallization behavior and application in polymer blends. Three series of semi-crystalline (PCL)<sub>n</sub> — HPL have been synthesized with HPL segments of 2,100, 3,500 and 6,400 molecular weight, respectively, and polycaprolactone blocks of varying size. Copolymers were produced by either copolymerizing ɛ-caprolactone or grafting preformed PCL segments onto HPL. The thermal and optical properties of these copolymers were investigated by DSC, DMTA and optical microscopy. The copolymers exhibited variable thermal behavior in relation to composition. The crystallization of PCL blocks was mainly governed by the nature of the HPL phase. PCL block length was another variable that affected crystallinity. The longer the segment, the higher the degree of crystallinity. The compatibility, morphology and mechanical properties of (PCL)<sub>n</sub> - HPL copolymers blended with poly(vinyl chloride) were also investigated. Methods used in this study included DSC, DMTA, SEM, TEM and stress-strain testing. The blends were shown to be compatible in all proportions. Mono-hydroxyl terminated cellulose propionate oligomers were synthesized by degradation with hydrogen bromide of a fully substituted, high molecular weight cellulose propionate molecule. Evidence of strict monofunctionality was demonstrated by H-NMR spectroscopy. Thermal analysis results indicated that the oligomers were semi-crystalline and their melting points were functions of molecular weight. (CP)<sub>n</sub> — HPL copolymers were synthesized by grafting oligomeric CP segments onto HPL via a coupling agent. The thermal and morphological properties of the copolymers were characterized by DMTA, DSC and TEM. Analysis by thermal methods and by electron microscopy showed strong evidence for microphase separation between HPL and CP segments. Cellulose propionate chains crystallize even at a low degree of polymerization, such as DP 5. The copolymer morphologies exhibit a broad variety of features. They vary from dispersed fibrils to spheres like and alternate lamella type patterns according to composition and molecular weights. The interfacial activity of the copolymers in blends of CP and HPL prepared in the melt state was also investigated. The tensile properties of the ternary blends were altered slightly by the presence of the copolymer. Melt blended cellulose propionate and HPL with low degree of propoxylation forms a miscible system with up to 40% HPL component. The incorporation of 5% of the (CP)<sub>n</sub> — HPL copolymer reduces the tensile strength by about 10%. Thermal behavior of melt blended cellulose propionate and HPL with high degree of propoxylation indicates the formation of an incompatible system at any composition. Before the addition of the copolymer the blend exhibits higher toughness, elongation up to 160%, and a Young's modulus of 23 ksi. The copolymer-modified blend shows a decrease in toughness and an increase in tensile strength by about 10%. The synthesis and characterization of (PS)<sub>n</sub> — HPL copolymers was accomplished in an analogous manner. When added to blends of PS and HPL, (PS)<sub>n</sub> -- HPL produced improved mechanical properties of the blends. Scanning electron microscopy of fracture surfaces demonstrated that the addition of copolymer to the PS/HPL blends improved the adhesion of the two phases. The addition of (PS)<sub>n</sub> — HPL copolymer to the 90 PS/10 HPL blend system strongly reduced, by about 10 fold, the particle size of the unmodified blend. No significant difference was observed in the morphology of the 80 PS/20 HPL system. The phases exhibited poor adhesion before and after the addition of copolymer. / Ph. D.
96

Polysiloxane-polyarylester block copolymers: synthesis and characterization

Brandt, Patricia J. Andolino January 1986 (has links)
Passive damping has been defined as a key element in vibration control. It is believed that the approach to passive damping could be addressed through the use of carefully designed viscoelastic polymeric materials. This dissertation describes the synthesis and characterization of multiphase, transparent block copolymers that are potential candidates for passive damping applications in large space structures. Relatively high molecular weight polysiloxane-polyarylester block copolymers were prepared by two different synthetic routes. A solution technique was used to synthesize well-defined, perfectly alternating block copolymers by reacting a difunctional silylamine—terminated siloxane oligomer with a difunctional hydroxyl-terminated polyarylester oligomer. A second approach involved the preparation of a segmented (or random) block copolymer by an interfacial, phase—transfer technique in which various polyarylester block lengths are formed <u>during</u> the copolymerization by reacting bisphenol-A, terephthaloyl chloride, and isophthaloyl chloride with a difunctional aminopropyl-terminated siloxane oligomer. To vary the miscibility of the siloxane and ester phases, and in turn the physical properties of the block copolymers, the block molecular weights and the siloxane block compositions (dimethyl, dimethyl-diphenyl, or dimethyl-trifluoropropylmethyl) were controlled. Structure analysis by NMR (proton and silicon) and FTIR verified that the desired starting oligomers and block copolymers were successfully prepared. Intrinsic viscosity measurements, size exclusion chromatography, and the fact that tough transparent films could be solution cast and compression molded indicated that relatively high molecular weight materials were prepared. Due to the high degree of incompatibility of the "soft" siloxane segments and the "hard" ester segments in the block polymers, a two-phase microstructure developed at relatively low block molecular weights. In addition to microphase separation, partial phase mixing was apparent from thermal, mechanical, and microscopic characterization techniques. Compared to a polyarylester homopolymer, the siloxane modified polyarylester block polymers displayed improved resistance to atomic oxygen degradation as seen from x-ray photoelectron spectroscopy and scanning electron microscopy. All physical properties were found to be dependent upon siloxane block composition and copolymer block molecular weights. In conclusion, new siloxane-ester block copolymers were prepared and characterized. They are believed to be potentially useful materials for passive damping applications in the space environment. / Ph. D. / incomplete_metadata
97

Toward sub-10 nm lithographic processes: epoxy-based negative tone molecular resists and directed self-assembly (DSA) of high χ block copolymers

Cheng, Jing 20 September 2013 (has links)
It’s becoming more and more difficult to make smaller, denser, and faster computer chips. There’s an increasing demand to design new materials to be applied in current lithographic process to get higher patterning performance. In this work, the aqueous developable single molecule resists were introduced, synthesized and patterned. A new group of epoxide other than glycidyl ether, cyclohexene oxide was introduced to functionalize a molecular core and 15 nm resolution was obtained. The directed self-assembly (DSA) of block copolymers as an alternative lithographic technique has received growing interest in the last several years for performing higher levels of pitch subdivision. A 3-step simplified process for DSA by using a photodefinable substrate was introduced by using a functionalized polyphenol with an energy switchable group and a crosslinkable group. Two high χ block copolymers PS-b-PAA and PS-b-PHEMA were successfully designed and synthesized via ATRP with controlled Mw and PDI. The size of the same PS-b-PAA polymer was tunable by varying the thermal annealing time. PS-b-PHEMA shows to be a suitable block polymer for the industry-friendly thermal annealing process. A self-complementary hydrogen-bonding urea group as a center group was used to facilitate the self-assembly of polymers. “Click” chemistry is promising for synthesis of PS-Urea-Urea-PMMA.
98

Synthesis and characterisation of amphiphilic block copolymers

Morkel, Charl Ernst 03 1900 (has links)
Thesis (PhD (Chemistry and Polymer Science)--University of Stellenbosch, 2005. / This study involves the synthesis and characterisation of PEG-based amphiphilic block copolymers for the hydrophilization of polysulphone ultrafiltration membranes. PEG based macro RAFT agents were synthesized and characterised. PEG-b-PS block copolymers were synthesized via the RAFT assisted controlled free radical polymerisation utilizing the synthesized PEG macro RAFT agents. The resulting polymerisation products were then analyzed by two-dimensional chromatography at the “critical conditions” for PS. In the second phase of this study PEG-b-PSU block copolymers were synthesized via the polycondensation of bis (4-chlorophenyl) sulphone, Bisphenol A, and PEG. The resulting products were characterised by NMR spectrometry. PEG-b-PS films and modified PSU membranes (modified by the addition of PEG-b-PSU block copolymer to the membrane casting solution) were prepared and analyzed. Surface analyses included static contact angle, AFM force-distance analysis, and FTIR-PAS analysis. Results showed the successful synthesis of both PEG-b-PS and PEG-b-PSU amphiphilic block copolymers. Surface analysis proved the successful hydrophilization of the surface of the modified PSU membranes.
99

Structure-property relationships in segmented copolymers

Tyagi, D. K. January 1985 (has links)
The structure-property relationships for various segmented copolymers were investigated. A number of mechanical and thermal characteristics were determined. The morphology was characterized by SAXS with respect to size and dispersion of domains; degree of phase separation and the domain interfacial thickness. a. Novel segmented copolymers were synthesized using amino terminated polydimethylsiloxane oligomers as the soft component and various hard component. lt was found that the performance of these copolymers was affected by the varying the hard segment linkages, hard segment content, soft segment MW, stiffness of the siloxane backbone, and amount of chain extender. Two-phase nature of these copolymers was verified by dynamic mechanical, thermal, and SAXS studies. The phase separation was found to occur in these copolymers with as little as 6% HS. These materials displayed behavior similar to the segmented polyurethanes and were found to be superior to the unfilled silicone elastomers. The final materials were used as reasonable models for investigating various methods for determining the interfacial layer thickness between the hard and soft phase. Specifically, due to the fact that there is no hard segment length distribution as is the usual case for segmented urethanes, these materials have some degree of model characteristics. Utilizing Porod's law, and appropriate analysis, both positive and negative deviations were found in the systematic series of copolymers with the degree of positive and negative character dependent upon composition. Negative deviations were accounted for in terms of a finite interfacial thickness which turned out to be relatively small as anticipated, while the positive deviations arose due to isolated hard segments that reside within the soft segment matrix, concentration fluctuations. ln calculating the interfacial thickness, several methods were applied and in general, close agreement was obtained. Finally, correlation function analysis in conjunction with determination of the coherent Porod lengths, etc. were determined and discussed accordingly. b. The structure-property behavior of novel 'water extended' segmented polyurethane-urea copolymers was also investigated. These copolymers were synthesized by utilizing the dehydration characteristics of tertiary alcohols at sufficiently high temperature in weak acidic medium. Mechanical, thermal, dynamic mechanical, and x-ray experiments were carried out to characterize the morphology and properties of these segmented copolymers of systematically varying hard segment content, soft segment MW, block length, and hard segment type. lt was observed that these properties depended primarily on the degree of order in the hard domains and the order could be improved by increasing either the HS content at constant soft segment MW or soft segment molecular weight at the same HS content. The results obtained for these materials were compared with those from conventional polyurethanes to investigate the effect of intermolecular hydrogen bonding on molecular arrangement. c. The final series of segmented copolymers studied were based on polysulfone and polydimethylsiloxane, synthesized by solution polymerization. lt is shown that by varying the length of the segments for each phase and their relative content, it is possible to alter the mechanical and thermal characteristics. The mechanical response was also influenced according to which phase is predominantly continuous. In addition to dynamic mechanical and SAXS measurements, the evidence of the two-phase structure was obtained by TEM. / Ph. D. / incomplete_metadata
100

The investigation and analysis of RAFT-mediated block copolymers in aqueous dispersed media

Pretorius, Nadine O. 12 1900 (has links)
Dissertation (MSc)--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: Polymers prepared via radical techniques are very common in our every day environment. The technique is however limited by a lack of control over the polymerization and an inability to produce block copolymers. Block copolymers have a significant number of potential applications in advanced materials and as a result are a field in which significant research is being conducted. Reversible Addition-Fragmentation chain transfer (RAFT) is a living free radical process that overcomes the disadvantages inherent in the traditional process. In this study the mediation behaviour of two inherently different RAFT agents was investigated by the “living” free radical polymerization of model monomers via the RAFT process in homogeneous and aqueous dispersed media with the focus on differentiating between the two types of agents. To ensure that the agents were comparable a new RAFT agent had to be prepared which has not previously been documented. The efficiency of the RAFT agents was compared in terms of rate effects, the predictability of the molecular weights of the polymers, the polydispersities of the polymers and their ability to allow block copolymer formation via sequential addition of monomers. Block copolymerizations were conducted by the addition of new monomer to the already existing RAFT end-capped chains. Monomer addition was done via three different approaches; namely shot addition, feed addition and pre-swelling (in the case of emulsions). Chromatographic analysis was conducted on the resulting block copolymers via liquid chromatography at critical conditions (LCCC), and its online coupling with size-exclusion chromatography (SEC) to obtain two-dimensional information on the differences in heterogeneity of their molecular distributions. Other analyses included dynamic light scattering analysis (DLS) and transmission electron microscopy (TEM). The detailed analysis enabled the understanding of the different products that are produced via the two different classes of RAFT agent. Potential causes for the differences are discussed and possible areas for future research are highlighted. The work presented here is the most detailed investigation of this class of polymerization to date and will provide new insight for researchers working in this vibrant and important research field. / AFRIKAANSE OPSOMMING: Polimere gesintetiseer deur die gebruik van radikaal tegnieke is algemeen in ons daaglikse omgewing. Die tegniek is egter beperk deur die gebrek aan beheer oor die polimerisasie en die onvermoë om blokkopolimere te sintetiseer. Blokkopolimere beskik oor ‘n aansienlike hoeveelheid potensiele aanwendinge in gevorderde materiale en is gevolglik ‘n belangrike navorsingsgebied. Omkeerbare addisie fragmentasie ketting oordrag (OAFO) is ‘n lewende vrye radikaal proses wat die inherente nadele van die tradisionele proses oorkom. In die betrokke studie is die mediasie gedrag van twee verskillende OAFO agente bestudeer deur die lewende vrye radikaal polimerisasie van model monomere deur die OAFO proses in homogene en waterig dispersie media met die fokus op differensiering tussen die twee tipes agente. Om te verseker dat die twee agente vergelykbaar is, is ‘n nuwe OAFO agent voorberei wat tot op hede nog nie gedokumenteer is nie. Die effektiwiteit van die OAFO agente is vergelyk in terme van tempo effekte, die voorspelbaarheid van die molekulêre massa van die polimere, die polidispersiteit van die polimere en die moontlikheid om blokkopolimerisasie deur kronologiese byvoeging van monomere te fasiliteer. Blokkopolimerisasie is uitgevoer deur die byvoeging van nuwe monomeer tot die alreeds bestaande OAFO eind-groep kettings. Monomeer byvoegings is uitgevoer deur drie verskillende metodes; naamlik vulskoot addisie, voer addisie en vooraf swelling (in die geval van emulsies). Chromatografiese analise is uitgevoer op die resulterende blokkopolimere deur vloeistof chromatografie by kritieke kondisie (LC-CC) en die aanlyn koppeling met grootte-uitsluiting vloeistof chromatografie, om twee-dimensionele informasie omtrent die verskille in heterogeniteit van hul molekulere verdeling te bepaal. Verdere analise sluit dinamiese verstrooing mikroskopie en transmissie elektron mikroskopie in. Die detaileerde analise onthul die samestelling van die verskillende produkte wat geproduseer is deur die verskillende klasse van OAFO agent. Potensiele oorsake vir die verskille is bespreek en moontlike areas vir toekomstige navorsing is benadruk. Die werk hier voorgestel is die mees gedetaileerde navorsing van hierdie tipe klas van polymerisasie tot op hede en beloof nuwe insig vir navorsers betrokke in hierdie dinamiese en belangrike navorsingsveld.

Page generated in 0.0953 seconds