• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dissecting human haematopoietic progenitors

Samitsch, Marina January 2013 (has links)
Human haematopoiesis resembles a complex hierarchy, however most intermediate stages are only poorly defined. Efforts to characterise human progenitors have been inconsistent and failed to integrate previous knowledge. Furthermore, characterisation of normal progenitors has important implications in acute myeloid leukaemia (AML) biology. We previously established that leukaemic stem cells (LSCs) resemble the immunophenotypic progenitor compartments more closely than the stem cell fraction. Therefore, I set out to characterise human stem and progenitor cells (HSCPs) on phenotypic, molecular and functional level to complete the picture of human haematopoiesis. I purified HSPCs based on their immunophenotype from adult bone marrow (BM) and umbilical cord blood (CB) to investigate steady state and neonatal haematopoiesis. To define differentiation potentials, HSPCs were subjected to functional in vitro assays on bulk and clonal level. Limit dilution assays were used to determine the frequency of cells with multiple differentiation potentials. RNA sequencing revealed underlying lineage priming and specific gene expression signatures. I successfully characterized the incompletely defined Lin<sup>-</sup>CD34<sup>+</sup>CD38<sup>-</sup>CD45RA<sup>+</sup> fraction in BM and CB, containing a CD10<sup>lo</sup> lymphoid-primed multipotent progenitor (LMPP) with T cell, B cell, NK cell, granulocytic and monocytic differentiation potential, and succeeded in placing it in the haematopoietic hierarchy with relation to similar lympho-myeloid progenitors defined by other groups. This research lays the foundation to characterise early human progenitors with a comprehensive toolkit on a phenotypic, molecular and functional level. Findings from this thesis might provide knowledge about potential targets in LSCs.
2

The role of Notch and GATA3 in postnatal and adult haematopoiesis

Duarte, Sara January 2011 (has links)
The role of Notch in cell fate determination and lineage restriction in the bone marrow (BM) is controversial in the field. Recent studies have convincingly shown that Notch is dispensable for haematopoietic stem cell (HSC) regulation in adult haematopoiesis (Maillard et al., 2008). In contrast, Notch signaling has been proposed to be of importance in the regulation of BM megakaryocyte progenitor differentiation, based on dominant negative genetic approaches, identifying a potentially distinct role for Notch in adult BM haematopoiesis (Mercher et al., 2008). Here, I found that by selectively ablating the gene coding the transcription factor recombination signal-binding protein J kappa (RBP-Jk), to which all canonical Notch signaling converges, canonical Notch signaling does not mediate HSC maintenance, neither in steady state nor in conditions of stress. Furthermore, I propose, in contrast with previous studies (Mercher et al., 2008), that canonical Notch signaling plays no role in myeloerythropoiesis cell lineage commitment in the BM. My data also show that key Notch target genes are suppressed by RBP-Jk, as their expression is unaffected in Notch1-deficient BM progenitors, while target genes are upregulated in Rbp-Jk-deleted megakaryocyte and erythroid progenitors. This establishes for the first time in mammalian cells in vivo, that Notch target genes are kept in a suppressed state by RBP-Jk, potentially restricting T cell commitment to the thymus and not to the BM, at the expense of myeloerythropoiesis. Notch signaling and GATA3 are two master regulators in T cell commitment (Han et al., 2002; Ho et al., 2009; Pui et al., 1999; Radtke et al., 1999; Zhu et al., 2004). However, although very well established as being involved in the thymic stages of T cell restriction, there is little evidence of Notch and GATA3 being involved in the migration of a thymus settling progenitor (TSP) from the BM to the thymus or in the establishment of the earliest thymic progenitor (ETP) in the thymus. From this thesis work, I conclude that Notch signaling is essential for the emergence of ETPs in the thymus in a NOTCH1-independent manner. Moreover, I demonstrate, as supported by a very recent published study (Hosoya et al., 2009), that GATA3 is important for the development of the earliest T cell progenitor. GATA1 and GATA2 mediate haematopoietic stem cell maintenance in the BM. GATA1 is required for erythropoiesis, megakaryocytes and eosinophils while GATA2 is important for the proliferation and survival of HSCs. In contrast, a role for GATA3 in the BM has never been established. By using a Gata3-conditional knockout mouse model, I demonstrate that GATA3 is dispensable for HSC maintenance in steady state and following active haematopoietic regeneration as well as for HSC self-renewal in the BM.
3

The mechanism of Nov (CCN3) function in haematopoiesis

Guo, Yanping January 2012 (has links)
Haematopoietic stem cells (HSC) are strictly regulated by intrinsic regulators and extrinsic signals from the microenvironment. Nov (CCN3), a matricellular protein of the CCN family, has been reported as a suppressor gene in solid tumours and chronic myeloid leukaemia (CML). Recent study identified Nov as a positive regulator in human cord blood CD34+ stem cells. However, the functions of Nov in haematopoiesis and adult HSC remain largely unknown.
4

Stem and progenitor cells in wound healing

Greenhowe, Jennifer January 2014 (has links)
As more patients with large body surface area burns are surviving and requiring reconstructive surgery, there is a necessity for advances in the provision of bioengineered alternatives to autologous skin cover. The aims of this Thesis are to identify feasible source tissues of Endothelial Colony Forming Cells and Mesenchymal Stem/Stromal Cells for microvascular network formation in vitro with three-dimensional dermal substitute scaffolds. The working hypothesis is that pre-vascularised dermal scaffolds will result in better quality scarring when used with split thickness skin grafts. Human umbilical cord blood, peripheral blood and adipose tissue were collected and processed with ethical approval and informed consent. Samples were cultured to form endothelial outgrowth colonies and confluent Mesenchymal Stem/Stromal Cells, which were characterised using flow cytometry and expanded in vitro. Mesenchymal Stem/Stromal Cell multipotency was confirmed with tri-lineage mesenchymal differentiation. Primary cells were tested in a two-dimensional tubule formation co-culture assay and differences assessed using a proangiogenic antibody array. Tubule formation was tested in four different acellular dermal substitute scaffolds; Integra® Dermal Regeneration Template, Matriderm®, Neuskin-F® and De-cellularised Human Cadaveric Dermis. Umbilical cord blood was the most reliable source of Endothelial Colony Forming Cells, the yield of which could be predicted from placental weight. Microvasculature dissected free from adipose tissue was a reliable source of Mesenchymal Stem/Stromal Cells which supported significantly more tubule formation than Mesenchymal Stem/Stromal Cells from whole adipose tissue. Microvasculature Mesenchymal Stem/Stromal Cells secreted significantly higher levels of the proangiogenic hormone leptin, and addition of exogenous leptin to the tubule formation assay resulted in significantly increased tubule formation. Microvasculature was cultured in all four of the scaffolds tested, but depth of penetration was limited to 100µm. The artificial oxygen carrier perfluorocarbon was shown to increase two-dimensional tubule formation and may be useful in further three-dimensional scaffolds studies to improve microvascular penetration.
5

Role of the haematopoietic transcription factor SCL in mesoderm development

Green, Angela Lisa January 2012 (has links)
During embryonic development, precursor cells commit to specific cell fates in response to environmental cues through the establishment of lineage-specific gene expression programmes. Transcription factors are important downstream effectors of signalling pathways that initiate and maintain cell fate decisions. The haematopoietic transcription factor SCL (TAL-1) is an essential regulator of embryonic blood development. However, the exact stage at which SCL is required, its mechanisms of action, and its genomic targets are poorly understood. Characterising, jiow SCL functions - , during haematopoietic development will provide insights into how stern cells are specified. Using the embryonic stem cell/embryoid body (ES/EB) system to model early mouse development, we describe a critical role for SCL in mesoderm patterning. SCL is first expressed in PDGFRa+ FLK1+ mesoderm populations which contain lateral, paraxial and cardiac precursors. Through loss- and gain-of-function studies, we show that SCL drives lateral mesoderm specification and activates the haematopoietic programme in a direct DNA-binding independent manner, while actively repressing alternative mesodermal fates, specifically cardiac development, in a DNA-binding dependent manner. At a molecular level, we have identified direct genomic targets of SCL in Flk-1 + mesoderm populations. These include haematopoietic and cardiac transcription factors, cardiac-specific structural proteins, signalling proteins and general transcriptional repressors; thereby strengthening the dual function of SCL in mesoderm patterning. Finally, we have shown that the cardiac transcription factor GATA4 acts in a reciprocal manner, specifying cardiac precursors while repressing a lateral mesoderm fate. Collectively, this implicates SCL as a critical transcriptional regulator of cell fate decisions in early mesodermal precursors, employing distinct molecular mechanisms to impose a blood programme. Moreover, and extending earlier reports, we document the existence of an antagonistic cross-talk between haematopoietic and cardiac lineages during mesoderm patterning. In conclusion, this work offers a cellular and molecular platform to begin to dissect the network of genetic interactions involved in these developmental processes.
6

Untersuchungen zur Qualität von peripheren Blutstammzellpräparaten

Leuthold, Jan 16 January 2003 (has links)
Das moderne Therapiekonzept der Hochdosischemotherapie von soliden Tumoren und hämatologischen Neoplasien erfordert die prätherapeutische Sammlung, die extrakorporale Reinigung und die nachfolgende Tieftemperaturlagerung von menschlichen Blutstammzellen zur späteren Retransplantation. Stammzellpräparate (Transplantate) von 22 Patienten wurden durch extrakorporale Trennung von peripheren Blut hergestellt. Von jedem Patienten wurde eine Probe mit Dimethylsulfoxid (DMSO) versetzt, bei - 196 oC gelagert und nach ca. 3 Wochen aufgetaut. Eine Vergleichsprobe jedes Patienten wurde ohne den Zusatz von DMSO und ohne einen Einfrierschritt untersucht. Die Exposition von DMSO, das Frieren und Auftauen der Zellen zeigte eine geringfügige des Zell- und Kerndurchmessers, eine konstante Anzahl an Mitochondrien und eine Reduktion der Vesikel. Ein markantes Merkmal der Schädigung nach Tieftemperaturlagerung war das Auftreten von Flüssigkeitseinlagerungen in die Kerndoppelmembran und die Ausbildung von zisternenartigen Erweiterungen des endoplasmatischen Retikulums. Regelmäßig konnten Mitochondrien von verringerter Größe und randständig kondensierter Cristae gefunden werden. Insgesamt konnten keine schwerwiegenden zellulären Schäden beim Vergleich der unbehandelten und der DMSO- versetzten , eingefrorenen und wieder aufgetauten Proben festgestellt werden. Die morphologischen Ergebnisse korrespondieren mit der vollständigen Restitution aller hämatopoetischer Zelllinien nach Transplantation. / The modern therapeutic concept of high-dose chemotherapy of solid tumors and hematologic neoplasias demands a pretherapeutic harvest, an extracorporal purification and an consecutive deep temperature storage of human blood stem cells which will be retransplanted later. Stem cell preparates (transplants) of 22 patients were produced by extracorporal separation of peripheral blood. From each patient a stem cell specimen was mixed with dimethylsulfoxide (DMSO), storaged at - 196 °C and thawed after about 21 days. A corresponding specimen of each patients material was investigated without DMSO addition and without freezing under native conditions. The DMSO exposed, frozed and again defrosted cells showed a mild increase of total cell and nucleus diameters, a constant number of mitochondrias and a reduction of vesicles. A markedly feature of deep temperature damage was the occurance of liquide storages in the nucleus double membrane and the forming of cisterne-like enlargement of the endoplasmatic reticulum. Persistantly we found mitochondrias with reduced size and marginal condensed cristae. Alltogether there were no severe cellular damages in the comparative investigated overlifed specimen cells of the same patient with and without DMSO and deep temperature storage. The morphological results correspond with clinical investigations of a sufficient restitution of all hematopoietic cell lineages in transplanted patients.
7

Pupečníková krev - vliv kryokonzervace a demografických údajů matky a dítěte na jejím přihojení při transplantaci / Cord blood - influence of cryopreservation and demographic data of mother and child on engraftment for the transplantation

SKLADANÁ, Veronika January 2011 (has links)
The Master´s thesis gives an overview of cord blood, its use, processing and cryopreservation. The role of cord blood as an alternative resource for transplantation is being widely discussed. In the experimental part, 50 grafts of donor cord blood were processed and the effect of cryopreservation and demographic factors of mother and child were evaluated on the cellularity of cord blood. Based on the evaluation, a recommendation about the inclusion of additional tests in routine processing of cord blood were made.
8

Development and Commercialization of Menstrual Blood Stem Cells Banking

Sethia, Pavan P. 02 May 2011 (has links)
No description available.
9

Regulating stem cell fate within microenvironmental niches

Buglass, Surahanil Katrin January 2014 (has links)
Improving the repopulation potential of human umbilical cord blood (UCB) haemopoietic stem cells (HSCs) remains a paramount goal in HSC transplantation (HSCT) therapy. This implies enhancing the homing and engraftment potential of UCB-CD34+CD133+ cells to the bone marrow (BM). Although an array of molecules continues to be identified as ‘key’ homing molecules, the molecular mechanisms controlling HSC homing are still not fully understood. The regulatory implications of hypoxia in the BM, with the concomitant stabilisation of hypoxia inducible transcription factor-1α (HIF-1α), are becoming more apparent, yet at the commencement of this thesis no study had explored whether hypoxia induced signalling can be adopted to regulate the homing and engraftment of transplanted HSCs. The aim of this DPhil project was thus to investigate whether hypoxic conditions as detected in the BM influence the adhesion of UBC-CD133+ cells to osteoblasts, BM stromal cells and BM endothelial cells-60 (BMEC-60), as well as their transmigration towards chemokine SDF-1α across BMEC-60. Increasing the exposure of UCB-CD133+ cells to 1.5% O2 doubled the percentage of transmigrating cells (p<0.05), and while hypoxia stimulated UCB-CD133+ cells preferentially adhered to IL-1β stimulated BMEC-60, their adhesion to non-stimulated (BMEC-60) was significantly improved (p<0.001). To help unravel the underlying molecular mechanisms, we attempted to examine the potential involvement of hypoxia regulated scaffolding protein HEF-1/NEDD9/Cas-L (HEF-1) in the increased percentage of migrating UCB-CD133+ cells after hypoxia pre-conditioning. The role of HEF-1 in HSCs is unexplored, and its multifunctional contribution in a variety of processes including cell migration, attachment and invasion make HEF-1 a prime candidate as a contributing homing molecule. After identifying a suitable short-hairpin RNA (shRNA) sequence to knockdown HEF-1, generating lentiviral (LV)-particles in house and optimising transduction protocols, HEF-1 knockdown was achieved in haemopoietic model cell lines KG-1 and KG-1A (KG-1/KG-1A–HEF1). Significantly decreased KG-1A–HEF1 cell adhesion to non-stimulated BMEC-60 was detected. Together, these studies provide a promising platform to further explore the role of HEF-1 in hypoxia induced UCB-CD133+ cell transmigration towards the key homing molecule SDF-1α.
10

La conservation autologue de sang de cordon ombilical : une ouverture sur une forme émergente de «citoyenneté biologique»

Alary, Anouck 10 1900 (has links)
La transformation du sang de cordon ombilical en une précieuse source de cellules souches a, dès le début des années 1990, donné naissance à une industrie commerciale globale de conservation faisant désormais concurrence à un large réseau de conservation public. Ce mémoire cherche à comprendre et à expliquer les soubassements socio-culturels liés à l’émergence de cette industrie, ainsi qu’à mieux cerner les enjeux éthiques et politiques qu’elle pose. En exposant en premier lieu la manière dont les institutions publiques de conservation de sang de cordon se définissent, et sont généralement définies par les comités bioéthiques, comme étant porteuses des valeurs d’altruisme et de solidarité nationale traditionnellement liées au modèle « redistributif » d’échange de sang et d’organes né au lendemain de la Seconde Guerre mondiale, nous problématisons la manière innovatrice par laquelle les banques privées structurent le rapport entre les mères et leurs propres produits biologiques comme l’expression d’une reconfiguration du lien social et politique caractérisée par l’émergence de nouvelles socialisés. L’hypothèse au coeur de ce mémoire est que celles-ci peuvent être comprises comme l’aboutissant de l‘espoir collectivement partagé par les consommatrices d’améliorer leur propre condition biologique familiale, étant lui-même le fruit d’une financiarisation croissante des sciences du vivant. En analysant le discours « promissif » que représente le matériel promotionnel des banques autologues, notre objectif est alors d’identifier la manière par laquelle les multiples potentialités attribuées au sang de cordon définissent des subjectivités maternelles caractérisées par des obligations morales spécifiques. / The recent transformation of cord blood to a precious source of stem cells has given rise to a global commercial industry of conservation, which is now competing with a large network of public cord blood banks. This dissertation explores the socio-cultural context surrounding the emergence of that industry and aims at elucidating the ethical and political concerns that it generates. It begins by examining how public cord blood banks define themselves (and are defined by ethical commitees) as purveyors of values such as altruism and national solidarity -that is, values which were traditionally linked to the « redistributive » model of human blood and organs exchanges that emerged after World War II. It next argues that private banks are bringing about a radical transformation of the relationship between mothers and their biological “products”. This dissertation suggests that this innovative model of exchange is an expression of contemporary reconfigurations of the very notion of community, which is now characterized by what we call new forms of “biosociality”. Our hypothesis is that these new socialities can be understood as the consequence of a collective hope to improve familial biological conditions, which is itself the product of the growing financiarization of life sciences. By way of a foray into the « promissive » discourse employed by private banks for their promotional material, the dissertation attemps to identify how these potentialities attributed to cord blood define new maternal subjectivities characterized by specific moral duties and obligations.

Page generated in 0.1017 seconds