• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • 8
  • 7
  • 7
  • 3
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 20
  • 11
  • 11
  • 11
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Micro-structuration de la surface des matériaux avec ligands bioactifs pour mimer la matrice extra-cellulaire osseuse / Micro-engineered substrates as bone extracellular matrix mimics

Bilem, Ibrahim 31 August 2016 (has links)
Actuellement, il est largement reconnu que la décision des cellules souches de maintenir leur caractère souche ou se différencier vers une lignée spécialisée dépend particulièrement de la nature de leur microenvironnement, appelé niche cellulaire. Une des composantes essentielles de cette niche cellulaire est la matrice extracellulaire (MEC), qui au-delà de sa fonction de support cellulaire, détermine le devenir des cellules souches en fonction de sa composition biochimique, sa structure et sa localisation. D’un point de vue rationnel, un biomatériau destiné à remplacer la fonction d’un tissu endommagé doit non seulement jouer le rôle d’échafaudage cellulaire mais également mimer les propriétés de la MEC dans son ensemble. Malheureusement, il est extrêmement difficile de concevoir des biomatériaux mimétiques de la MEC naturelle tenant compte de sa complexité structurelle et fonctionnelle. Pour pallier à cette problématique, il semble nécessaire d’effectuer un travail en amont de déconstruction/reconstruction de la complexité de la MEC en étudiant l’effet individuel puis combiné de ses propriétés sur la différenciation des cellules souches. Ce projet de doctorat rentre dans le cadre de ce travail et vise à déterminer le rôle spécifique ou concomitant de différentes propriétés inhérentes à la MEC sur la différenciation ostéoblastique des cellules souches mésenchymateuses humaines (hCSMs). En effet, nous avons évalué l’effet de la composition biochimique de la MEC et la distribution spatiale des ligands sur la différenciation des hCSMs, en fonctionnalisant la surface d’un matériau modèle avec les peptides RGD et/ou BMP-2, distribués d’une manière aléatoire ou structurée. / Actually, it is well-established that maintaining the stemness character of stem cells or eliciting their lineage-specific differentiation is closely related to the nature of their microenvironment, known as stem cell niche. The extracellular matrix (ECM), a key component of stem cell niche, not only provides a support function for stem cells but also dictates their fate decision. From a rational point of view, a biomaterial intended to replace a damaged tissue should mimic the natural ECM in all its aspects, including its biochemistry, 3D structure, topography, porosity, rigidity…. etc. Unfortunately, the design of biomaterials that fully mimic the natural ECM is still a big challenge, due to its high structural and functional complexity. Towards the development of finely-tuned biomaterials, it seems important to start by deconstructing and then reconstructing the complexity of the ECM. In this context, the thesis project, herein, seeks to evaluate both the individual and the synergistic effect of different properties inherent to the natural ECM on human mesenchymal stem cells (hMSCs) osteogenic differentiation. Indeed, we investigated whether the biochemical composition of the ECM and the spatial distribution of its components modulate hMSCs osteogenesis. This was achieved by creating different artificial ECMs, in vitro, containing RGD and/or BMP-2 mimetic peptides, distributed randomly or as specific micropatterns on the surface of a model material.
42

Die Generierung axial vaskularisierten Knochengewebes im arteriovenösen Gefäßschleifenmodell des Schafes: Die Generierung axial vaskularisierten Knochengewebes imarteriovenösen Gefäßschleifenmodell des Schafes

Löw, Johanna 30 August 2011 (has links)
Zur Therapie von Knochendefekten, die nach Traumata, nach Infektion oder Knochennekrosen ohne das Einbringen von Knochenersatz nicht zu heilen sind, wird versucht, Knochenersatz oder Knochenersatzgewebe mit Hilfe des Tissue Engineerings zu züchten. Da eine vollständige Vaskularisation für das Einheilen großer Ersatzgewebe unabdingbar ist, wird durch verschiedene Strategien versucht eine Blutgefäßversorgung solcher Knochenersatzgewebe zu erzielen. Das Ziel dieser Arbeit ist die Generierung axial vaskularisierten Knochenersatzgewebes mit einer β-Trikalziumphosphat-Hydroxylapatitkeramik, mesenchymalen Stammzellen und BMP-2 (bone morphogenetic protein 2) im Großtiermodell des Schafes. Um das Potential zur Knochenbildung bei Verwendung einer β-Trikalziumphosphat-Hydroxylapatitkeramik mit und ohne Zugabe des Wachstumsfaktors bone morphogenetic protein 2 (BMP-2) von ovinen mesenchymalen Stammzellen sowohl als direkt reimplantierte oder vorher expandierte Zellquelle zu untersuchen, wurden im ersten Teil dieser Studie die mesenchymalen Stammzellen des Schafes isoliert und durch Durchflusszytometrie auf Proteinebene und PCR-Untersuchung auf Genebene charakterisiert. Die für die Induktion der Knochenbildung nötige Konzentration von BMP-2 in Kombination mit der Knochenersatzmatrix und Fibrinkleber im Schaf wurde durch subkutane Implantation evaluiert. Nach zwölf Wochen Implantationsdauer wurden die Konstrukte mit 2,5 μg/ml, 12,5 μg/ml und 60 μg/ml BMP-2 im Fibrinkleber durch histologische Auswertung untersucht. Es konnte festgestellt werden, dass für die Ausbildung von lamellärem Knochengewebe 60μg/ml BMP-2 nötig waren. Als nächster Schritt wurden zur Untersuchung des Verhaltens der mesenchymalen Stammzellen für unterschiedliche Implantationsdauern sowohl direkt reimplantierte mesenchymale Stammzellen als auch expandierte Stammzellen im subkutanen Modell des Schafes untersucht. Das Verhalten der verschieden prozessierten Stammzellen war bezüglich ihres Proliferations- und Apoptoseverhaltens, das immunhistologisch untersucht wurde, ähnlich. Das Potential zur ektopen Knochenbildung der direkt reimplantierten mesenchymalen Stammzellen alleine oder in Kombination mit 60 μg/ml BMP-2 und der expandierten mesenchymalen Stammzellen jeweils mit β-Trikalziumphosphat-Hydroxylapatitkeramik und Fibrinkleber wurde nach zwölfwöchiger subkutaner Implantation untersucht. Durch PCR-Untersuchungen konnte gezeigt werden, dass in allen drei Gruppen Knochengene im Vergleich zur Kontrollgruppe mit β-Trikalziumphosphat-Hydroxylapatitkeramik und Fibrinkleber hochreguliert waren. Die quantitative histologische Auswertung ergab, dass die innerhalb der Konstrukte gebildete Knochenfläche im Vergleich zu den anderen Gruppen in den Konstrukten mit expandierten mesenchymalen Stammzellen signifikant größer war. Zur Generierung axial vaskularisierten Knochengewebes wurde das AV-Loop-Modell der Ratte auf das Schaf übertragen und das Potential von direkt reimplantierten mesenchymalen Stammzellen mit β-Trikalziumphosphat-Hydroxylapatitkeramik allein und mit der Zugabe von 60 μg/ml BMP-2 untersucht. Neben der Analyse der Vaskularisierung dieser Konstrukte durch immunhistologische und bildgebende Methoden wurde die Knochenbildung anhand histologischer Präparate quantifiziert. Die AV-Loop-Konstrukte beider Gruppen waren nach zwölfwöchiger Implantationsdauer vollständig vaskularisiert. Die für die Gruppe mit BMP-2 als Wachstumsfaktor durchgeführten intravitalen MRT-Untersuchungen zeigten, dass der Zuwachs an Gefäßen vor allem zwischen der vierten und achten Woche stattfand. Die quantitative Auswertung der neugebildeten Knochenfläche wurde semiautomatisch an histologischen Präparaten durchgeführt. In der Gruppe mit β-Trikalziumphosphat-Hydroxylapatitkeramik, direkt reimplantierten mesenchymalen Stammzellen und 60 μg/ml BMP-2 war die Knochenfläche signifikant größer als in der Gruppe ohne Wachstumsfaktor. Mit dieser Studie konnte erstmals im Großtiermodell gezeigt werden, dass mesenchymale Stammzellen nach direkter Reimplantation im subkutanen Modell und im AV-Loop-Modell zur Induktion der Knochenbildung fähig sind. Durch die Generierung axial vaskularisierten Knochenersatzgewebes im Großtiermodell des Schafes könnte es gelingen, die Größenlimitierung der durch Tissue Engineering gezüchteten Ersatzgeweben zu überwinden.
43

Dual Osteogenic and Angiogenic Growth Factor Delivery as a Treatment for Segmental Bone Defects

Oest, Megan Elizabeth 28 June 2007 (has links)
A new model of a critically-sized segmental femoral bone defect in rats was developed to enable in vivo imaging and facilitate post-mortem mechanical testing of samples. The critically-sized nature of the model was assessed and confirmed. The efficacy of sustained co-delivery of osteogenic (BMP-2 and TGF- Ò3) and angiogenic (VEGF) growth factors in promoting functional bone repair was assessed. Effects of scaffold modification in terms of geometry and composition were evaluated. The results indicated that co-delivery of BMP-2 and TGF- Ò3 resulted in a dose-dependent improvement in functional bone repair. Modification of the polylactide scaffold to include an absorbable ceramic component and a cored out geometry enhanced rate of union. Addition of VEGF to the scaffold treatment did not significantly impact revascularization of the defect site or functional repair of the bone defect. These data demonstrate that the complex environment of an acute bone defect requires different treatment strategies than simple ectopic models would suggest. A positive predictive correlation between bone repair parameters measured in vivo and mechanical functionality was established. The novel defect model demonstrated robustness and reproducibility. Implications for further research are discussed.
44

Delivery of BMP-2 for bone tissue engineering applications

Johnson, Mela Ronelle 04 January 2010 (has links)
Bone defects and fracture non-unions remain a substantial challenge for clinicians due to a high occurrence of delayed union or non-union requiring surgical intervention. The current grafting procedures used to treat these injuries have many limitations and further long-term complications associated with them. This has resulted in research efforts to identify graft substitution therapies that are able to repair and replace tissue function. Many of these tissue engineered products include the use of growth factors to induce cell differentiation, migration, proliferation, and/or matrix production. However, current growth factor delivery methods are limited by poor retention of growth factors upon implantation resulting in low bioactivity. These limiting factors lead to the use of high doses and frequent injections, putting the patients at risk for adverse effects. The goal of this work was to develop and evaluate the efficacy of BMP-2 delivery systems to improve bone regeneration. We examined two approaches for delivery of BMP-2 in this work. First, we evaluated the use of a self-assembling lipid microtube system for the sustained delivery of BMP-2. We determined that sustained delivery of BMP-2 from the lipid microtube system was able to enhance osteogenic differentiation compared to empty microtubes, however did not demonstrate a significant advantage compared to a bolus BMP-2 dose in vitro. Second, we developed and assessed the functionality of an affinity-based system to sequester BMP-2 at the implant site and retain bioactivity by incorporating heparin within a collagen matrix. Incorporation of heparin in the collagen matrix improved BMP-2 retention and bioactivity, thus enhancing cell-mediated mineralized matrix deposition in vitro. Lastly, the affinity-based BMP-2 delivery system was evaluated in a challenging in vivo bone repair model. Delivery of pre-bound BMP-2 and heparin in a collagen matrix resulted in new bone formation with mechanical properties not significantly different to those of intact bone. Whereas delivery of BMP-2 in collagen or collagen/heparin matrices had similar volumes of regenerated mineralized tissue but resulted in mechanical properties significantly less than intact bone properties. The work presented in this thesis aimed to address parameters currently preventing optimal performance of protein therapies including stability, duration of exposure, and localization at the treatment site. We were able to demonstrate that sustained delivery of BMP-2 from lipid microtubes was able to induce osteogenic differentiation, although this sustained delivery approach was not significantly advantageous over a bolus dose. Additionally, we demonstrated that the affinity-based system was able to improve BMP-2 retention within the scaffold and in vitro activity. However, in vivo implantation of this system demonstrated that only delivery of pre-complexed BMP-2 and heparin resulted in regeneration of bone with mechanical properties not significantly different from intact bone. These results indicate that delivery of BMP-2 and heparin may be an advantageous strategy for clinically challenging bone defects.
45

Radiomorphometrische Untersuchung der Knochenregeneration in vivo durch kombinierte Freisetzung von VEGF und BMP aus den PDLLA/CaCO3-Komposit-Scaffolds. / Radiomorphometric investigation of bone regeneration in vivo through the combined release of VEGF and BMP from the PDLLA / CaCO3 composite scaffolds.

Rau, Anna 22 February 2021 (has links)
No description available.
46

A Computational Model for Fracture Healing Integrated with Mechanical Stimulation and Growth Factors

Jernberg, Cassandra January 2014 (has links)
Non-union bone fractures are a standing problem for clinical treatments. It has been found that the exogenous growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2) induces bone healing in potential non-union fractures. However, the currently used clinical dose of rhBMP-2 is high and causes side-effects. Mechanical loading is known to enhance the induced effects of rhBMP-2 in bone healing, which may lead to a reduced required dose. Yet, the exact underlying mechanism is unknown. To further investigate the combined role of mechanical loading and rhBMP-2 in the early phase of fracture healing a 2D computational model was developed. The model uses a lattice-based approach where biological rule-based events are combined with finite element analysis to simulate both untreated bone healing progression and when subjected to mechanical loading and rhBMP-2. Two healing cases were investigated:  normal fracture healing in a small bone defect (1 mm gap) and non-union fracture healing in a large bone defect (5 mm gap). By varying the magnitude and timing of applied load as well as the rhBMP-2 dose, a combination that would reduce the currently used rhBMP-2 dose and still enable healing in a large bone defect was searched. The model could simulate fracture healing in a large bone defect when subjected to rhBMP-2, independently of the applied load. Also the expected non-union result in a large bone defect without applied rhBMP-2 was obtained. The model could not capture normal fracture healing in a small bone defect as well as bone remodelling. It was found that a 50 % reduced rhBMP-2 dose could not induce healing in a large bone defect when applied separately but when applied together with load. Additionally, this combination of stimulation gave similar results compared to other combinations using higher rhBMP-2 doses. To conclude, even though the model was able to replicate some of the healing events seen experimentally, it is in need of modifications to correct current deficiencies. Still, after some further development and validation, the model has the potential to be used in future studies of fracture healing when influenced by mechanical loading and rhBMP-2. The found possibility for a reduced dosage of rhBMP-2 when applied together with load has to be further investigated before any conclusions can be drawn.
47

FABRICATION AND CHARACTERIZATION OF BIOACTIVE, COMPOSITE ELECTROSPUN BONE TISSUE ENGINEERING SCAFFOLDS INTENDED FOR CLEFT PALATE REPAIR

Madurantakam, Parthasarathy 23 July 2009 (has links)
Tissue Engineering is a scientific discipline that aims to regenerate tissues and organs that are diseased, lost or congenitally absent. It encompasses the use of suitable synthetic equivalents of native extracellular matrix that may or may not be supplemented with cells or relevant growth factors. Such scaffolds are designed to reside at the site of implantation for a variable period of time during which they induce the regeneration of native tissue. During this time, they also provide a template for new cells to attach, infiltrate, differentiate into appropriate phenotype and eventually restore function of the concerned tissue. Among the factors that affect the outcome are the composition of scaffold, methods of fabrication, bulk properties of the scaffold and topography and architecture at the cellular level. Bone is unique in the body in that it is one of the few tissues capable of complete regeneration even in adults, as seen during fracture healing. However, certain conditions (non-union of fractures, congenital and acquired bone deficiencies) exist in which the regenerative capacities of bone are exceeded and appropriate intervention becomes necessary. Current treatment options include autologous bone grafts harvested from iliac crest or de-cellularized allografts or synthetic substitutes made from metals, ceramics and polymers. However these options have serious limitations: while autografts are limited in supply, necessitate second surgery and show inadequate vascularization, allografts can transmit viral infections. Metals, ceramics and polymers are in essence structural replacements without performing any biological function. Other problems associated with these synthetic materials include adverse immune reactions, corrosion, stress-shielding and secondary fractures due to inadequate osseo-integration. Bone tissue engineering is a specialized field of research that provides an alternative strategy to repair bone defects by exploiting the advances in engineering and better understanding of bone biology. Scaffold-based tissue engineering approach is a promising field that involves implantation of a biomaterial that is specifically matched in terms of biological and material properties to the tissue it replaces. This study explores the feasibility of using electrospinning as a potential fabrication strategy for bone tissue engineering applications, more specifically intended for cleft palate repair. This model represents a congenital deformity that affects both hard and soft tissues and presents unique challenges and opportunities. Among the challenges are: the need for the implant allow growth of the most complex areas of the facial skeleton, integrate and grow with the patient through adolescence, the ability of the implant to not interfere with vital functions including breathing and feeding. Further the implant should provide a flexible matrix that can effectively support erupting teeth. In spite of these extreme demands, maxilla is a non load-bearing membranous bone, a favorable consideration from materials engineering perspective. The present study is organized into three independent sections. The first section investigates developing strategies intended to improve the material properties of electrospun bone scaffold. Bone is composed of a high volume fraction (50%) of inorganic hydroxyapatite nanocrystals that is closely associated with collagen. The dispersal of brittle mineral is critical in not only strengthening the bone in compression but also contributes to the osteoconductivity of the matrix. Since loading of mineral in a bone scaffold is a serious limitation, we attempted to achieve improved loading of bone mineral by dual mineralization approach. We first incorporated nanocrystalline hydroxyapatite (nHA) directly into the scaffold by adding it to the electrospinning polymer solution. The second step involves inducing biomimetic mineralization of electrospun scaffolds by incubating them in simulated body fluid (SBF) for 2 weeks. The hypothesis was that the nanocrystalline hydroxyapatite seeded during electrospinning would act as sites for nucleation and further crystal growth when incubated in solution supersaturated with respect to calcium and phosphate ions. We tested this approach in two synthetic, biocompatible polymers-polydioxanone and poly (lactide: glycolide) and four formulations of SBF with differential loading of nHA (0-50% by wt. of polymer). A modified Alizarin Red S (ARS) staining that specifically binds to calcium was developed that allowed us to quantify the mineral content of 3D scaffold with great accuracy. Results indicated a unique combination of factors: PDO scaffolds containing 50% nHA incubated in 1x revised-SBF incubated under static conditions gave maximum mineralization over a period of two weeks. We then sought to exploit these findings to engineer a stiffer scaffold by stacking multiple layers together and cold welding them under high pressure. Electrospun scaffolds (1, 2 or 4 layered stacks) were either compressed before or after mineralizing treatment with SBF. After two weeks, scaffolds were analyzed for total mineral content and stiffness by uniaxial tensile testing. Results indicated while compression of multiple layers significantly increases the stiffness of scaffolds, it also had lower levels of mineralization partly due to increased density of fibers and loss of surface area due to fiber welding. However this can be offset to a reasonable degree by increasing the number of stacks and hence this strategy can be successfully adopted to improve the mechanical properties of electrospun scaffolds. The second section introduces a novel infrared imaging technique to quantify and characterize the biological activity of biomaterials, based on cell adhesion. Cells attach to the surface by the formation of focal contacts where multiple proteins including vinculin and talin assemble to signal critical processes like cell survival, migration, proliferation and differentiation. After allowing MG-63 osteoblasts to adhere to 2D biomaterial surface coated with extracellular matrix proteins (collagen, gelatin, fibronectin) cells were fixed and probed with antibodies for vinculin and talin. Secondary antibodies, tagged with infrared-sensitive fluorescent dyes, were used to quantify the molecules of interest. In addition, the kinetics of focal contact formation in these different substrates was followed. Successful quantification of focal contacts were made and further research revealed phosphorylation of vinculin at pY-822 as one potential mechanism for recruitment of vinculin to focal contacts. Hence it could represent a subset of vinculin and might serve as a specific molecular marker for focal contacts. As an extension, we evaluated the possibility of using such an assay to quantify 3D electrospun tissue engineering scaffolds. We fabricated scaffolds of graded biological activity by electrospinning blends of polydioxanone and collagen in different ratios. Vinculin and talin expressed by MG-63 cultured on these scaffolds for 24 hours were quantified in a similar manner. Results indicate that while talin does not show a significant difference in expression among different scaffolds, vinculin showed a positive correlation with increasing biological activity of scaffolds. In conclusion, we have identified vinculin as a reliable marker of focal contacts in 3D scaffolds while phosphovinculin (pY-822) was more specific to focal contacts in coated 2D substrates. In both instances, infrared imaging proved to be reliable in study of focal contacts. The third section aims to make the bone scaffolds osteoinductive- a property of a material to induce new bone formation even when implanted in subcutaneous and intramuscular heterotopic sites. Bone morphogenetic proteins (BMP) are potent cytokines that can induce migration, proliferation and differentiation of stem cells along osteoblastic lineage. The therapeutic efficacy of BMPs in the treatment of severe bone defects has been identified and is currently FDA approved for specific orthopedic applications. BMPs are clinically administered in a buffer form that not only makes the treatment expensive but less effective. Suitable delivery systems for BMP delivery have been an intense area of investigation. We rationalized electrospinning as a strategy to incorporate BMP within the scaffold and that would enable controlled release when implanted. One of the drawbacks of using electrospinning to deliver bioactive molecules is the potential denaturing effect and eventual loss of activity of BMPs. The final section of this dissertation tries to develop sensitive and relevant assays that could answer intriguing questions about solvent-protein interaction. We chose to use the BMP-2/7 heterodimer as the osteoinductive molecule of choice because of its superior potency compared to homodimer counterparts. We characterized the detection and quantification of BMP-2/7 using a slot blot technique. Further, we used a novel cell line (C2C12 BRA) to test the retention of activity of BMP-2/7 that has been exposed to organic solvents. Results indicate significant loss of activity when BMPs are exposed to organic solvents but complete recovery was possible by diluting the solvent with an aqueous buffer.
48

Impact of Nicotine and PPARd-agonist on Human Mesenchymal Stem Cells

Bhat, Samerna 20 May 2013 (has links)
No description available.
49

Efeitos da fototerapia com laser em baixa intensidade e dos fatores de crescimento PDGF e BMP-2, isolados ou em associação, na diferenciação ósseo/odontogênica de células-tronco de polpa dentária humana / Effects of low intensity laser therapy and growth factors PDGF and BMP-2 on the odontogenic differentiation of dental pulp stem cells

Ferreira, Leila Soares 15 September 2011 (has links)
A fototerapia com laser em baixa intensidade (FTLBI) é capaz de aumentar o metabolismo celular, o que poderia influenciar na diferenciação ósseo/odontogênica das células-tronco da polpa dentária humada (hDPSCs). O PDGF e o BMP-2 são fatores de crescimento envolvidos na dentinogênese e na reparação tecidual. O PDGF tem papel importante durante o desenvolvimento embrionário, na proliferação e migração celular e na angiogênese, enquanto o BMP-2 está fortemente associado à diferenciação celular em tecidos mineralizados, como o osso e a dentina. Sendo assim, o objetivo do estudo foi analisar os efeitos da FTLBI e dos fatores de crescimento (PDGF-BB ou BMP-2), isolados ou em associação, na diferenciação ósseo/odontogênica das hDPSCs. Para o estudo hDPSCs foram cultivadas em meio regular (G1) e irradiadas (G2), meio mineralizante (G3) e irradiadas (G4), meio mineralizante contendo PDGF-BB (G5) e irradiadas (G6), meio mineralizante contendo BMP-2 (G7) e irradiadas (G8). Para os grupos irradiados, a FTLBI foi realizada no modo pontual e em contato, com um laser de diodo semi-condutor, com área de feixe de 0,028cm2 e comprimento de onda 660nm (InGaAlP-vermelho), utilizando-se os seguintes parâmetros: potência de 20mW, densidade de energia de 5J/cm2, tempo de irradiação de 7 segundos por ponto e 0,14J de energia por ponto. A expressão dos genes relacionados à diferenciação ósseo/odontogênica (DSPP, DMP-1 e OCN) através do PCR quantitativo em tempo real (qRT-PCR), a atividade da fosfatase alcalina e os depósitos de cálcio foram analisados em 3, 7 e 14 dias. Os dados obtidos foram comparados pelo teste ANOVA complementado pelo teste de Tukey (p<0,05). As culturas tratadas com meio mineralizante contendo BMP-2 e irradiadas (G8) foram as que mostraram os maiores índices de diferenciação ósseo/odontogênica nos testes realizados. As expressões de DSPP, OCN e DMP-1, ao menos em 14 dias, foram significantemente maiores no G8 que nos demais grupos experimentais, exceto os grupos G3 e G7. Estes grupos apresentaram expressões de DSPP e OCN semelhantes às do G8 em 14 dias. A maior atividade de ALP foi observada no G8 em 3 dias e a menor no mesmo grupo aos 14 dias. A maior quantidade de depósitos de cálcio também foi encontrada no G8 em 14 dias. A associação de FTLBI e BMP-2 se mostrou capaz de induzir a diferenciação ósseo/odontogênica em células-tronco de polpa dentária humana de forma mais marcante que as demais terapias isoladas ou associadas estudadas. Portanto, o uso de uma terapia associando FTLBI e BMP-2 poderia ser de relevância para o restabelecimento da fisiologia pulpar quando aplicada em casos de exposição deste tecido, uma vez que poderia favorecer a diferenciação das células indiferenciadas da polpa dentária. / Laser phototherapy (LPT) is able to increase cellular metabolism, which in turn could influence the odontogenic differentiation of dental pulp stem cells (hDPSCs). PDGF and BMP-2 are growth factors involved in dentinogenesis and tissue repair. PDGF plays a role in embryonic development, cell proliferation, cell migration, and angiogenesis, whereas BMP-2 is strongly associated with cell differentiation in mineralized tissues such as bone and dentin. The aim of this study was to analyze the effects of LPT and the growth factors PDGF-BB and BMP-2 combined or not on the odontogenic differentiation of hDPSCs. These cells were grown in regular medium (G1) and irradiated (G2), mineralizing medium (G3) and irradiated (G4), mineralizing medium containing PDGF-BB (G5) and irradiated (G6), mineralizing medium containing BMP-2 (G7) and irradiated (G8). For irradiated groups, LPT was performed in punctual and contact mode with a semiconductor diode laser, with a beam spot area of 0.028 cm2 and wavelength of 660nm (InGaAlP-visible red), using the following parameters: power of 20mW, energy density of 5J/cm2 and irradiation time of 7 seconds per point (0,14 J per point). Differentiation was assessed by the following analysis: expression of genes related to odontogenic differentiation (DSPP, DMP-1 and OCN) using quantitative real time PCR (qRT-PCR); alkaline phosphatase activity and calcium deposition using alizarin red staining in 3, 7 and 14 days. Data were compared by ANOVA and Tukey´s test (p<0.05). The cultures treated with mineralizing medium containing BMP-2 and irradiated (G8) showed the highest rate of odontogenic differentiation. The expressions of DSPP, DMP-1 and OCN genes, at least in 14 days, were significantly higher in G8 compared to all other groups, except for the groups G3 and G7. These groups showed similar expressions of DSPP and OCN than G8 in 14 days. G8 showed the highest ALP activity in 3 days and the lowest in 14 days compared to all other groups. The largest amount of calcium deposits was observed in G8 in 14 days. The most striking feature on induction of odontogenic differentiation of hDPSCs was observed when LPT was applied in association with BMP-2. Therefore, the use of a combined LPT and BMP-2 therapy could be of relevance for the re-establishment of pulp physiology when applied in cases of dental pulp exposure by promoting the differentiation of hDPSCs.
50

Efeitos da fototerapia com laser em baixa intensidade e dos fatores de crescimento PDGF e BMP-2, isolados ou em associação, na diferenciação ósseo/odontogênica de células-tronco de polpa dentária humana / Effects of low intensity laser therapy and growth factors PDGF and BMP-2 on the odontogenic differentiation of dental pulp stem cells

Leila Soares Ferreira 15 September 2011 (has links)
A fototerapia com laser em baixa intensidade (FTLBI) é capaz de aumentar o metabolismo celular, o que poderia influenciar na diferenciação ósseo/odontogênica das células-tronco da polpa dentária humada (hDPSCs). O PDGF e o BMP-2 são fatores de crescimento envolvidos na dentinogênese e na reparação tecidual. O PDGF tem papel importante durante o desenvolvimento embrionário, na proliferação e migração celular e na angiogênese, enquanto o BMP-2 está fortemente associado à diferenciação celular em tecidos mineralizados, como o osso e a dentina. Sendo assim, o objetivo do estudo foi analisar os efeitos da FTLBI e dos fatores de crescimento (PDGF-BB ou BMP-2), isolados ou em associação, na diferenciação ósseo/odontogênica das hDPSCs. Para o estudo hDPSCs foram cultivadas em meio regular (G1) e irradiadas (G2), meio mineralizante (G3) e irradiadas (G4), meio mineralizante contendo PDGF-BB (G5) e irradiadas (G6), meio mineralizante contendo BMP-2 (G7) e irradiadas (G8). Para os grupos irradiados, a FTLBI foi realizada no modo pontual e em contato, com um laser de diodo semi-condutor, com área de feixe de 0,028cm2 e comprimento de onda 660nm (InGaAlP-vermelho), utilizando-se os seguintes parâmetros: potência de 20mW, densidade de energia de 5J/cm2, tempo de irradiação de 7 segundos por ponto e 0,14J de energia por ponto. A expressão dos genes relacionados à diferenciação ósseo/odontogênica (DSPP, DMP-1 e OCN) através do PCR quantitativo em tempo real (qRT-PCR), a atividade da fosfatase alcalina e os depósitos de cálcio foram analisados em 3, 7 e 14 dias. Os dados obtidos foram comparados pelo teste ANOVA complementado pelo teste de Tukey (p<0,05). As culturas tratadas com meio mineralizante contendo BMP-2 e irradiadas (G8) foram as que mostraram os maiores índices de diferenciação ósseo/odontogênica nos testes realizados. As expressões de DSPP, OCN e DMP-1, ao menos em 14 dias, foram significantemente maiores no G8 que nos demais grupos experimentais, exceto os grupos G3 e G7. Estes grupos apresentaram expressões de DSPP e OCN semelhantes às do G8 em 14 dias. A maior atividade de ALP foi observada no G8 em 3 dias e a menor no mesmo grupo aos 14 dias. A maior quantidade de depósitos de cálcio também foi encontrada no G8 em 14 dias. A associação de FTLBI e BMP-2 se mostrou capaz de induzir a diferenciação ósseo/odontogênica em células-tronco de polpa dentária humana de forma mais marcante que as demais terapias isoladas ou associadas estudadas. Portanto, o uso de uma terapia associando FTLBI e BMP-2 poderia ser de relevância para o restabelecimento da fisiologia pulpar quando aplicada em casos de exposição deste tecido, uma vez que poderia favorecer a diferenciação das células indiferenciadas da polpa dentária. / Laser phototherapy (LPT) is able to increase cellular metabolism, which in turn could influence the odontogenic differentiation of dental pulp stem cells (hDPSCs). PDGF and BMP-2 are growth factors involved in dentinogenesis and tissue repair. PDGF plays a role in embryonic development, cell proliferation, cell migration, and angiogenesis, whereas BMP-2 is strongly associated with cell differentiation in mineralized tissues such as bone and dentin. The aim of this study was to analyze the effects of LPT and the growth factors PDGF-BB and BMP-2 combined or not on the odontogenic differentiation of hDPSCs. These cells were grown in regular medium (G1) and irradiated (G2), mineralizing medium (G3) and irradiated (G4), mineralizing medium containing PDGF-BB (G5) and irradiated (G6), mineralizing medium containing BMP-2 (G7) and irradiated (G8). For irradiated groups, LPT was performed in punctual and contact mode with a semiconductor diode laser, with a beam spot area of 0.028 cm2 and wavelength of 660nm (InGaAlP-visible red), using the following parameters: power of 20mW, energy density of 5J/cm2 and irradiation time of 7 seconds per point (0,14 J per point). Differentiation was assessed by the following analysis: expression of genes related to odontogenic differentiation (DSPP, DMP-1 and OCN) using quantitative real time PCR (qRT-PCR); alkaline phosphatase activity and calcium deposition using alizarin red staining in 3, 7 and 14 days. Data were compared by ANOVA and Tukey´s test (p<0.05). The cultures treated with mineralizing medium containing BMP-2 and irradiated (G8) showed the highest rate of odontogenic differentiation. The expressions of DSPP, DMP-1 and OCN genes, at least in 14 days, were significantly higher in G8 compared to all other groups, except for the groups G3 and G7. These groups showed similar expressions of DSPP and OCN than G8 in 14 days. G8 showed the highest ALP activity in 3 days and the lowest in 14 days compared to all other groups. The largest amount of calcium deposits was observed in G8 in 14 days. The most striking feature on induction of odontogenic differentiation of hDPSCs was observed when LPT was applied in association with BMP-2. Therefore, the use of a combined LPT and BMP-2 therapy could be of relevance for the re-establishment of pulp physiology when applied in cases of dental pulp exposure by promoting the differentiation of hDPSCs.

Page generated in 0.0367 seconds