Spelling suggestions: "subject:"boltzmann lot"" "subject:"boltzmann plot""
1 |
超音速自由分子流における非ボルツマン回転エネルギー分布の実験的解析森, 英男, MORI, Hideo, 新美, 智秀, NIIMI, Tomohide, 秋山, 勇雄, AKIYAMA, Isao, 都築, 巧, TSUZUKI, Takumi 02 1900 (has links)
No description available.
|
2 |
A Study on REMPI as a Measurement Technique for Highly Rarefied Gas Flows (Analyses of Experimental REMPI Spectra in Supersonic Free Molecular Flows)MORI, Hideo, ISHIDA, Toshihiko, AOKI, Yoshinori, NIIMI, Tomohide 08 1900 (has links)
No description available.
|
3 |
REMPIによる超希薄気体流計測に関する研究 (超音速自由分子流におけるREMPIスペクトルの解析)森, 英男, MORI, Hideo, 石田, 敏彦, ISHIDA, Toshihiko, 青木, 義典, AOKI, Yoshinori, 新美, 智秀, NIIMI, Tomohide 05 1900 (has links)
No description available.
|
4 |
REMPIによる超音速自由分子流における回転温度非平衡現象の解析に関する研究森, 英男, MORI, Hideo, 新美, 智秀, NIIMI, Tomohide, 丹羽, 健二, NIWA, Kenji, 秋山, 勇雄, AKIYAMA, Isao 03 1900 (has links)
No description available.
|
5 |
Plasma Temperature Measurements in the Context of Spectral InterferenceSeesahai, Brandon 01 January 2016 (has links)
The path explored in this thesis is testing a plasma temperature measurement approach that accounts for interference in a spectrum. The Atomic Emission Spectroscopy (AES) technique used is called Laser Induced Breakdown Spectroscopy (LIBS) and involves focusing a laser pulse to a high irradiance onto a sample to induced a plasma. Spectrally analyzing the plasma light provides a "finger print" or spectrum of the sample. Unfortunately, spectral line broadening is a type of interference encountered in a LIBS spectrum because it blends possible ionic or atomic transitions that occur in plasma. To make use of the information or transitions not resolved in a LIBS spectrum, a plasma temperature method is developed. The basic theory of a LIBS plasma, broadening mechanisms, thermal equilibrium and distribution laws, and plasma temperature methods are discussed as background support for the plasma temperature method tested in this thesis. In summary, the plasma temperature method analyzes the Full Width at Half the Maximum (FWHM) of each spectral line for transitions provided from a database and uses them for temperature measurements. The first implementation of the temperature method was for simulated spectra and the results are compared to other conventional temperature measurement techniques. The temporal evolution of experimental spectra are also taken as a function of time to observe if the newly developed temperature technique can perform temporal measurements. Lastly, the temperature method is tested for a simulated, single element spectrum when considering interferences from all the elements provided in an atomic database. From stimulated and experimental spectra analysis to a global database consideration, the advantages and disadvantages of the temperature method are discussed.
|
6 |
Stérilisation de dispositifs médicaux ensachés par plasmas froids basse pression / Low pressure plasma sterilization of packaged medical devicesMaho, Thomas 19 December 2016 (has links)
Dans le domaine médical, l’évolution des techniques et des technologies ainsi que l’apparition de nouveaux matériaux ont favorisé le développement de dispositifs médicaux (DM) toujours plus performants et légers. Certains de ces matériaux sont difficilement stérilisables de par leur fragilité aux agents stérilisants (physiques ou chimiques). De nombreuses études ont montré l’efficacité des plasmas froids sur des souches bactériennes pathogènes mais le maintien à l’état stérile des DM fragiles et sensibles à la température reste un verrou technique à lever. Cette thèse CIFRE s’inscrit dans le cadre du projet ANR PLAS’STER. Il vise à développer un procédé industriel pouvant répondre à une certification comme stérilisateur par plasmas froids basse pression. Le caractère innovant réside en la création et au confinement d’un plasma à l’intérieur d’un sac de stérilisation assurant la préservation de l’état stérile du DM stérilisé. Une première partie a été consacrée à la caractérisation physique des décharges plasmas confinées dans le sac de stérilisation. Cette étude a permis d’identifier les espèces potentiellement bactéricides et de définir des conditions favorables à leur production. Dans un second temps, l’efficacité bactéricide du procédé a été démontrée sur des bactéries à Gram négatif et à Gram positif selon la norme EN556. En parallèle, l’étude paramétrique réalisée sur E. coli a apporté des éléments de réponse sur les mécanismes de stérilisation et a ouvert des pistes sur l’optimisation du procédé. Enfin, l’analyse post-traitement des propriétés de biomatériaux a démontré l’absence de modifications macromoléculaires et a validé la potentialité du procédé PLAS’STER comme alternative aux méthodes usuelles de stérilisation. / Standard sterilization methods such as autoclave, ethylene oxide or irradiation can affect the biocompatibility of medical devices, especially those sensitive to heat or chemicals products. Numerous studies have demonstrated the possibility to use low pressure plasmas as an alternative sterilization process: low process temperature, treatment time competitive to autoclave and without any toxic agent. However, the sterile state preservation is still a problem. In the framework of the ANR PLAS'STER project, this CIFRE thesis focus on a new sterilization process development based on low pressure cold plasmas. The innovation resides in the creation and the confinement of a plasma inside a sterilization bag, thereby ensuring the conservation of the sterile state. The first part was dedicated to the physical characterization of the plasmas discharges confined inside the bag of sterilization. Secondly, the bactericidal efficiency of the process was demonstrated on Gram negative and Gram positive bacteria according to the EN556 standard. Additional tests on E. coli lead to hypothesis on the sterilization mechanisms and opened tracks on the optimization of our process. Finally, the properties analysis of biomaterials demonstrated the absence of macromolecular modifications and validated the potentiality of the process PLAS' STER as the sterilization method alternative.
|
7 |
Space and time characterization of laser-induced plasmas for applications in chemical analysis and thin film deposition / Caractérisation spatio-temporelle de plasmas induits par laser pour des applications à la chimie analytique et au dépôt de couches mincesDawood, Mahmoud 12 1900 (has links)
Après des décennies de développement, l'ablation laser est devenue une technique importante pour un grand nombre d'applications telles que le dépôt de couches minces, la synthèse de nanoparticules, le micro-usinage, l’analyse chimique, etc. Des études expérimentales ainsi que théoriques ont été menées pour comprendre les mécanismes physiques fondamentaux mis en jeu pendant l'ablation et pour déterminer l’effet de la longueur d'onde, de la durée d'impulsion, de la nature de gaz ambiant et du matériau de la cible.
La présente thèse décrit et examine l'importance relative des mécanismes physiques qui influencent les caractéristiques des plasmas d’aluminium induits par laser. Le cadre général de cette recherche forme une étude approfondie de l'interaction entre la dynamique de la plume-plasma et l’atmosphère gazeuse dans laquelle elle se développe. Ceci a été réalisé par imagerie résolue temporellement et spatialement de la plume du plasma en termes d'intensité spectrale, de densité électronique et de température d'excitation dans différentes atmosphères de gaz inertes tel que l’Ar et l’He et réactifs tel que le N2 et ce à des pressions s’étendant de 10‾7 Torr (vide) jusqu’à 760 Torr (pression atmosphérique).
Nos résultats montrent que l'intensité d'émission de plasma dépend généralement de la nature de gaz et qu’elle est fortement affectée par sa pression. En outre, pour un délai temporel donné par rapport à l'impulsion laser, la densité électronique ainsi que la température augmentent avec la pression de gaz, ce qui peut être attribué au confinement inertiel du plasma. De plus, on observe que la densité électronique est maximale à proximité de la surface de la cible où le laser est focalisé et qu’elle diminue en s’éloignant (axialement et radialement) de cette position. Malgré la variation axiale importante de la température le long du plasma, on trouve que sa variation radiale est négligeable. La densité électronique et la température ont été trouvées maximales lorsque le gaz est de l’argon et minimales pour l’hélium, tandis que les valeurs sont intermédiaires dans le cas de l’azote. Ceci tient surtout aux propriétés physiques et chimiques du gaz telles que la masse des espèces, leur énergie d'excitation et d'ionisation, la conductivité thermique et la réactivité chimique.
L'expansion de la plume du plasma a été étudiée par imagerie résolue spatio-temporellement. Les résultats montrent que la nature de gaz n’affecte pas la dynamique de la plume pour des pressions inférieures à 20 Torr et pour un délai temporel inférieur à 200 ns. Cependant, pour des pressions supérieures à 20 Torr, l'effet de la nature du gaz devient important et la plume la plus courte est obtenue lorsque la masse des espèces du gaz est élevée et lorsque sa conductivité thermique est relativement faible. Ces résultats sont confirmés par la mesure de temps de vol de l’ion Al+ émettant à 281,6 nm. D’autre part, on trouve que la vitesse de propagation des ions d’aluminium est bien définie juste après l’ablation et près de la surface de la cible. Toutefois, pour un délai temporel important, les ions, en traversant la plume, se thermalisent grâce aux collisions avec les espèces du plasma et du gaz. / After decades of development, laser ablation has become an important technique for a large number of applications such as thin film deposition, nanoparticle synthesis, micromachining, chemical analysis, etc. Experimental and theoretical studies have been conducted to understand the physical mechanisms of the laser ablation processes and their dependence on the laser wavelength, pulse duration, ambient gas and target material.
The present dissertation describes and investigates the relative importance of the physical mechanisms influencing the characteristics of aluminum laser-induced plasmas. The general scope of this research encompasses a thorough study of the interplay between the plasma plume dynamics and the ambient gas in which they expand. This is achieved by imaging and analyzing the temporal and spatial evolution the plume in terms of spectral intensity, electron density and excitation temperature within various environments extending from vacuum (10‾7 Torr) to atmospheric pressure (760 Torr), in an inert gas like Ar and He, as well as in a chemically active gas like N2.
Our results show that the plasma emission intensity generally differs with the nature of the ambient gas and it is strongly affected by its pressure. In addition, for a given time delay after the laser pulse, both electron density and plasma temperature increase with the ambient gas pressure, which is attributed to plasma confinement. Moreover, the highest electron density is observed close to the target surface, where the laser is focused and it decreases by moving away (radially and axially) from this position. In contrast with the significant axial variation of plasma temperature, there is no large variation in the radial direction. Furthermore, argon was found to produce the highest plasma density and temperature, and helium the lowest, while nitrogen yields intermediate values. This is mainly due to their physical and chemical properties such as the mass, the excitation and ionization levels, the thermal conductivity and the chemical reactivity.
The expansion of the plasma plume is studied by time- and space-resolved imaging. The results show that the ambient gas does not appreciably affect plume dynamics as long as the gas pressure remains below 20 Torr and the time delay below 200 ns. However, for pressures higher than 20 Torr, the effect of the ambient gas becomes important and the shorter plasma plume length corresponds to the highest gas mass species and the lowest thermal conductivity. These results are confirmed by Time-Of-Flight (TOF) measurements of Al+ line emitted at 281.6 nm. Moreover, the velocity of aluminum ions is well defined at the earliest time and close to the target surface. However, at later times, the ions travel through the plume and become thermalized through collisions with plasma species and with surrounding ambient gas.
|
Page generated in 0.0586 seconds