• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 7
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 32
  • 14
  • 13
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental and Numerical Methods for Characterizing the Mixed-Mode Fracture Envelope for a Tough Epoxy

Jackson, Christopher M. 14 December 2021 (has links)
PR-2930 was developed by PPG Industries, Inc. to meet the challenging performance requirements of MIL-PRF-32662 Group-I-classified adhesives. PR-2930 is a high-strength, high-toughness, epoxy-based adhesive intended for automotive and aerospace applications. As PR-2930 functions as a structural adhesive, quantification of its mechanical properties and limit-states is a necessary task for designing joints bonded with the adhesive. The combination of both strength and ductility results in material non-linearities, making experimental characterization and numerical analyses more challenging. This work explores the quantification of fracture energy for PR-2930 bonded joints. Fracture can occur in one of three different modes, or in some combination. Many practical adhesive joints fail in the mixed-mode region involving both opening (mode I) and shearing (mode II) displacements. Mode I fracture was evaluated with double cantilever beam (DCB) tests, mode II fracture was characterized by end-notched flexure (ENF) tests, and varying degrees of mixed mode I/II fracture were assessed through single leg bend (SLB), single-lap joint (SLJ), and asymmetric DCB and SLB tests. Test specimens were fabricated by bonding Al 2024-T3 adherends, ranging from 1.6 mm to 25.4 mm thick, with a 0.25 mm thick PR-2930 adhesive layer. Digital image correlation (DIC) was used to experimentally measure local displacements and surface strains on the adherends. Standard data-reduction methods often used to determine fracture energies of bonded joint specimens were used to numerically analyze test results. These methods included the Corrected Beam Theory (CBT), the Compliance-Based Beam Method (CBBM), and the Paris and Paris J-Integral approach. Linear elastic fracture mechanics (LEFM) conditions must be valid to correctly apply these methods, however plastic deformations were observed in some adherends. Drawbacks of these approaches and their validity for analyzing PR-2930 joints were discussed. To account for non-linearities, more advanced numerical analysis was performed using finite element analysis (FEA) with cohesive zone models (CZMs) to model the adhesive layer. CZM parameters such as fracture energies and traction separation law (TSL) shapes were determined from experimental data and published literature. Results from CZMs were compared to experimental load, displacement, and strain data. Recommended TSLs for mode I and mode II fracture were formed in this work as well as a mixed-mode relationship using a Benzeggagh-Kenane damage evolution law. More ideal analytical methods were suggested to simplify analysis of joints using the same or similar material compositions. / M.S. / Structural adhesives are used to safely transmit loads in our furniture, automobiles, aircraft, and buildings. PR-2930 is a newly developed epoxy that exhibits top-of-the-line strength and ductility. To safely design joints utilizing PR-2930, the bonding material and its limit states must be defined. The most pertinent mechanical limit state for adhesively bonded joints is its resistance to fracture, also known as fracture toughness. Fracture often occurs due to a combination of opening (mode I) or shearing (mode II) displacements. In this work, standard and novel advanced fracture characterization techniques are employed and subsequently compared. Adhesive joints using a 0.25 mm layer thickness are bonded to Al 2024-T3 adherends varying from 1.6 mm to 25.4 mm of thickness and tested in quasistatic conditions. Mathematical models of mode I, mode II, and combined mode I/II stress displacement responses (AKA a traction-separation laws) of PR-2930 are developed and compared with experimental data. Future experimental and numerical methods for fracture analysis of structural adhesives are discussed.
12

Strength Prediction And Fatigue De-Bond Growth In Bonded Joints In Metallic And Composite Structures

Sahoo, Pradeep Kumar 07 1900 (has links) (PDF)
Large scale structures such as those in aerospace flight vehicles are made in parts and assembled. Joints are inevitable in these systems and they are potential threats to the structural integrity of the flight vehicles. Fastener and bonded joints are the most commonly used methods of joining in these structures. Among these, adhesive bonding has become more popular with the advent of composite structures, due to the presence of less number of points of stress concentration and the resulting benefit for static strength and fatigue life. In modern aircraft in which maximum percentage of composite materials are being employed due to several benefits, designers are contemplating to replace discrete joints with adhesively bonded joints wherever possible. A detailed literature survey shows that the field of adhesively bonded joints has been extensively studied in the past. Initial publications appeared in late 1950’s and early 1960's, but many of the initial attempts were based on one dimensional (1-D) approximation of the adherents due to lack of computing power. With the current day emphasis on safety and damage tolerance, there is a definite need to study these joints with 2-D and 3-D idealization. In spite of valuable contributions in the literature from several researchers in past 4-5 decades, one finds that there are gaps to be filled, in particular, with reference to static strength prediction and de-bond growth to failure under fatigue loading. This thesis is intended as a modest contribution in this direction covering the methods of strength prediction and also correlations between de-bond growth and fracture parameters. Most commonly used bonded joints are single lap joints. The primary issue in their analysis is the geometric nonlinearity resulting in large deformations due to eccentricity of load path between the adherents. Further, adhesives have very low yield strength and plastic deformation in thin adhesives could affect the mechanics of load transfer. The current work is initiated by carrying out geometric and material nonlinear analysis of adhesively bonded single lap joints between metal-metal (aluminum-aluminum) adherents using standard NASTRAN finite element software. Modified Newton-Raphson iterative technique has been used to economize the computer time and also achieve fast convergence. A convergence study has been conducted to determine the order of mesh size required. Preliminary results are obtained on configurations analysed by earlier workers and the current results are compared with their results. Later, extensive experimental and numerical studies have been taken up on the numerical strength prediction of these joints correlating them to the experimental values. Cohesive failure along the centre line of the adhesive is assumed under both static and fatigue loading. The bonded joints are studied with both 2-D plane stress and plane strain nonlinear FE analysis. The issue in this type of analysis is the presence of theoretical elastic singularity at the ends of the lap length. The normally used maximum stress criterion can not be used in such circumstances. There were attempts in the past to use point stress or average stress criteria for this purpose. In point stress criterion the shear stress (or von-Mises stress) is picked at a characteristic distance away from the ends of the lap length and compared with the corresponding strength value to predict failure. In the average stress criterion the stresses are averaged over a characteristic distance from the ends of lap length and this is compared with the corresponding strength to predict failure. Determination of the characteristic distance in both the cases needs extensive experimental results on static strength of joints. The static strength data is to be correlated with numerical results to determine the characteristic distance in various specimens. In the current thesis a series of specimens with aluminum-aluminum, aluminum-CFRP composite and CFRP-CFRP composite adherents were tested to determine the static strength. In all the specimens the adhesive used was Redux 319 A. These experimental strength data was used to determine characteristic distance using point stress criterion. The consistency of estimates of the characteristic distances in all the specimens shows that the approach is capable of predicting the static strength. The above approaches are capable of predicting the strength of joints with linear material and nonlinear geometric analysis. But when the adhesive yield strength is low, a novel approach is required to predict the static strength. Numerical analysis is conducted using a combined material and geometric nonlinear analysis in NASTRAN software. The plastic zone size from the ends of the lap length is determined at different load levels. Combining the numerical results with experimental failure load data, a failure criterion based on plastic zone size (PZS) is proposed in this thesis and validated. It has been observed that the validation is with limited testing carried out and further experimental programs are required to complete the validation. To the best of the knowledge of the author PZS criterion is used for the first time for failure prediction of bonded joints. The structural integrity of the joints also requires a study of de-bond growth and damage tolerance assurances in the presence of de-bond type of defects. The first step in this direction is to estimate the fracture parameters at the tips of de-bond in the adhesive of lap joints between various adherents. Modified virtual crack closure integral (MVCCI) technique has been developed in the past for estimating Strain Energy Release Rates (SERR) in several crack problems. Large contributions for developing this technique have come from the group where the author has worked. This technique is simple and has the ability to estimate individual SERR components GI and GII in cases of mixed mode fracture. It is seen clearly that the de-bond growth in bonded joint is one of mixed mode. The mode-II component is because of shear stresses transferring the load across the adherents and mode-I component is due to peel stresses developed during the deformation. The mode I SERR component is primarily responsible for de-bond growth and the effect of mode II component on de-bond growth is insignificant. The mesh details for accurately estimating the SERR components are evaluated and those meshes are used to estimate these values for the cases of aluminum-aluminum, aluminum-CFRP composite and composite-composite joints. Obviously, when the adherents are dissimilar, mode I SERR components are the highest and assist faster de-bond growth. Painstaking fatigue de-bond growth experiments were conducted and de-bond growth rate with number of cycles of fatigue loading was determined. MVCCI method is used to estimate SERR components at maximum load and zero load in the fatigue cycle, to determine the SERR range in the fatigue cycle. Since the stress ratio, R of the loading cycle is -1, the minimum load for estimating SERR components is taken as zero. From the experimental data and numerical estimates, a Paris type of equation was developed for the de-bond growth. The thesis concludes with a summary of the achievements in the current work with respect to the structural integrity of adhesively bonded joints and also with suggestions for future work.
13

Damage characterisation and lifetime prediction of bonded joints under variable amplitude fatigue loading

Shenoy, Vikram January 2009 (has links)
Adhesive bonding is one of the most attractive joining techniques for any structural application, including high profile examples in the aerospace, automotive, marine construction and electrical industries. Advantages of adhesive bonding include; superior fatigue performance, better stress distribution and higher stiffness than conventional joining techniques. When the design of bonded joints is considered, fatigue is of critical importance in most structural applications. There are two main issues that are of importance; a) in-service damage characterisation during fatigue loading and, b) lifetime prediction under both constant and variable amplitude fatigue loading. If fatigue damage characterisation is considered, there has been some work to characterise damage in-situ using the backface strain (BFS) measurement technique, however, there has been little investigation of the effects of different types of fatigue behaviour under different types of geometry and loading. Regarding fatigue lifetime prediction of bonded joints, most of the work in the literature is concentrated with constant amplitude fatigue, rather than variable amplitude fatigue. Fatigue design of a bonded structure based on constant amplitude fatigue, when the actual loading on the structure is of the variable amplitude fatigue, can result in erroneous lifetime prediction. This is because of load interaction effects caused by changes in load ratio, mean load etc., which can decrease the fatigue life considerably. Therefore, the project aims to a) provide a comprehensive study of the use of BFS measurements to characterise fatigue damage, b) develop novel techniques for predicting lifetime under constant amplitude fatigue and c) provide an insight into various types of load interaction effects. In this project, single lap joints (SLJ) and compound double cantilever beam geometries were used. Compound double cantilever beams were used mainly to determine the critical strain energy release rate and to obtain the relationship between strain energy release rate and fatigue crack growth rate. The fatigue life of SLJs was found to be dominated by crack initiation at lower fatigue loads. At higher fatigue loads, fatigue life was found to consist of three phases; initiation, stable crack propagation and fast crack growth. Using these results, a novel damage progression model was developed, which can be used to predict the remaining life of a bonded structure. A non-linear strength wearout model (NLSWM) was also proposed, based on strength wearout experiments, where a normalised strength wearout curve was found to be independent of the fatigue load applied. In this model, an empirical parameter determined from a small number of experiments, can be used to determine the residual strength and remaining life of a bonded structure. A fracture mechanics approach based on the Paris law was also used to predict the fatigue lifetime under constant amplitude fatigue. This latter method was found to under-predict the fatigue life, especially at lower fatigue loads, which was attributed to the absence of a crack initiation phase in the fracture mechanics based approach. A damage mechanics based approach, in which a damage evolution law was proposed based on plastic strain, was found to predict the fatigue life well at both lower and higher fatigue loads. This model was able to predict both initiation and propagation phases. Based on the same model, a unified fatigue methodology (UFM) was proposed, which can be used to not only predict the fatigue lifetime, but also various other fatigue parameters such as BFS, strength wearout and stiffness wearout. The final part of the project investigated variable amplitude fatigue. In this case, fatigue lifetime was found to decrease, owing to damage and crack growth acceleration in various types of variable amplitude fatigue loading spectra. A number of different strength wearout approaches were proposed to predict fatigue lifetime under variable amplitude fatigue loading. The NLSWM, where no interaction effects were considered was found to over-predict the fatigue life, especially at lower fatigue loads. However, approaches such as the modified cycle mix and normalised cycle mix approaches were found to predict the fatigue life well at all loads and for all types of variable amplitude fatigue spectra. Progressive damage models were also applied to predict fatigue lifetime under variable amplitude fatigue loading. In this case a fracture mechanics based approach was found to under-predict the fatigue life for all types of spectra at lower loads, which was established to the absence of a crack initiation phase in this method. Whereas, a damage mechanics based approach was found to over-predict the fatigue lifetime for all the types of variable amplitude fatigue spectra, however the over- prediction remained mostly within the scatter of the experimental fatigue life data. It was concluded that, the damage mechanics based approach has potential for further modification and should be tested on different types of geometry and spectra.
14

Progresivní styčníky FRP kompozitů konstrukcí dopravní infrastruktury / Joints from FRP composite intended for transport infrastructure

Simon, Pavel January 2018 (has links)
This thesis deals with junction points of construction used in transport infrastructure, which are made of FRP composite material. Main focus is on bonded joints. The material and geometrical criteria od FRP material and there influence to junctions are analyzed. In sequential steps the development of the design of joints applicable to reference constructions - pedestrian walkways is documented. There are also presented practical experiences from the tests of joints of overlapped and single-sided joints, as well as experience from the design, production and testing of two types of pedestrian bridges on a real scale. Furthermore, extensive comparison of joints, in particular T-joints with closed profiles for selected types of fasteners, is provided. From a simple connection, screws and rivets or plain bonding to combined joints. These are assessed both in terms of bearing capacity and their deformation behavior. These tests are performed for two material combinations, FRP-FRP and FRP-steel.
15

Some Experimental and Numerical Studies on Evaluation of Adhesive Bond Integrity of Composites Lap Shear Joints

Vijaya Kumar, R L January 2014 (has links) (PDF)
Adhesive bonding which has been in use for long as a traditional joining method has gained ground in the last couple of decades due to the introduction of advanced composite materials into the aerospace industry. Bonded structures have advantages such as high corrosion and fatigue resistance, ability to join dissimilar materials, reduced stress concentration, uniform stress distribution, good damping characteristics etc. They also have certain limitations like environmental degradation, existence of defects like pores, voids and disbonds, difficulty in maintenance and repair etc. A serious drawback in the use of adhesively bonded structures has been that there are no established comprehensive non-destructive testing (NDT) techniques for their evaluation. Further, a reliable evaluation of the effect of the existing defects on strength and durability of adhesive joints is yet to be achieved. This has been a challenge for the research and development community over several decades and hence, been the motivation behind this piece of research work. Under the scope of the work carried out in the thesis, some of the primary factors such as the existence of defects, degradation of the adhesive, stress and strain distribution in the bonded region etc., have been considered to study the bond integrity in composite to composite lap shear joints. The problem becomes complex if all the parameters affecting the adhesive joint are varied simultaneously. Taking this into consideration, one of the key parameters affecting the bond quality, viz., the adhesive layer degradation was chosen to study its effect on the bonded joint. The epoxy layer was added with different, definite amount of Poly vinyl alcohol (PVA) to arrive at sets of bonded joint specimens with varied adhesive layer properties. A thorough review of different non destructive testing methods applied to this particular problem showed that ultrasonic wave based techniques could be the right choice. To start with, preliminary experimental investigations were carried on unidirectional glass fiber reinforced plastic (GFRP-epoxy) lap joints. The adhesive joints were subjected to non destructive evaluation (NDE) using ultrasonic through transmission and pulse echo techniques as also low energy digital X-ray techniques. The results obtained showed a variation in reflected and transmitted ultrasonic pulse amplitude with bond quality. Digital X-Ray radiography technique showed a variation in the intensity of transmitted x-rays due to variation in the density of adhesive. Standard mechanical tests revealed that the addition of PVA decreased the bond strength. A plot of coefficient of reflection from the first interface and the bond strength showed a linear correlation between them. After obtaining a cursory feel and understanding of the parameters involved with the preliminary experiments on GFRP adhesive joints which yielded interesting and encouraging results, further work was carried on specimens made out of autoclave cured carbon fiber reinforced plastic (CFRP)-epoxy bonded joints. Normal incidence ultrasound showed a similar trend. Analyses of the Acoustic Emission (AE) signals generated indicate early AE activity for degraded joints compared to healthy joints. Literary evidences suggest that the ultrasonic shear waves are more sensitive to interfacial degradation. An attempt was made to use oblique incidence ultrasonic interrogation using shear waves. The amplitude of reflected shear waves from the interface increased with an increase in degradation. Further, a signal analysis approach in the frequency domain revealed a shift in the frequency minimum towards lower range in degraded samples. This phenomenon was verified using analytical models. An inversion algorithm was used to determine the interfacial transverse stiffness which decreased significantly due to increase in degradation. Conventional ultrasonic evaluation methods are rendered ineffective when a direct access to the test region is not possible; a different approach with guided wave techniques can be explored in this scenario. Investigations on CFRP-epoxy adhesive joints using Lamb waves showed a decrease in the amplitude of ‘So’ mode in degraded samples. Theoretical dispersion curves exhibited a similar trend. Frequency domain studies on the received modes using Gabor wavelet transform showed a negative shift in frequency with increased degradation. It was also observed that the maximum transmission loss for the most degraded sample with 40 percent PVA occurred in the range of 650 – 800 kHz. Non linear ultrasonic (NLU) evaluation revealed that the nonlinearity parameter (β) increased with increased degradation. Kissing bonds are most commonly occurring type of defects in adhesive joints and are very difficult to characterize. A recent non-contact imaging technique called digital image correlation (DIC) was tried to evaluate composite adhesive joints with varied percentage of inserted kissing bond defects. The results obtained indicate that DIC can detect the kissing bonds even at 50 percent of the failure load. In addition, to different experimental approaches to evaluate the bonded joint discussed above, the effect of degradation on the stresses in the bond line region was studied using analytical and numerical approach. A linear adhesive beam model based on Euler beam theory and a nonlinear adhesive beam model based on Timoshenko beam theory were used to determine the adhesive peel and shear stress in the joint. Digital image correlation technique was used to experimentally obtain the bond line strains and corresponding stresses were computed assuming a plane strain condition. It was found that the experimental stresses followed a similar trend to that predicted by the two analytical models. A maximum peel stress failure criterion was used to predict failure loads. A failure mechanism was proposed based on the observations made during the experimental work. It was further shown that the critical strain energy release rate for crack initiation in a healthy joint is much higher compared to a degraded joint. The analytical models become cumbersome if a larger number of factors have to be taken into account. Numerical methods like finite element analysis are found to be promising in overcoming these hurdles. Numerical investigation using 3D finite element analysis was carried out on CFRP-epoxy adhesive joints. The adherend – adhesive interface was modeled using connector elements whose stiffness properties as well as the bulk adhesive properties for joints with different amounts of PVA were determined using ultrasonic inspection method. The peel and shear stress variation along the adhesive bond line showed a similar trend as observed with the experimental stress distribution (DIC) but with a lesser magnitude. A parametric study using finite element based Monte-Carlo simulation was carried out to assess the effect of variation in various joint parameters like adhesive modulus, bondline thickness, adherend geometrical and material properties on peel and shear stress in the joint. It was found that the adhesive modulus and bond line thickness had a significant influence on the magnitude of stresses developed in the bond line. Thus, to summarize, an attempt has been made to study the bond line integrity of a composite epoxy adhesive lap joint using experimental, analytical and numerical approaches. Advanced NDE tools like oblique incidence ultrasound, non linear ultrasound, Lamb wave inspection and digital image correlation have been used to extract parameters which can be used to evaluate composite bonded joints. The results obtained and reported in the thesis have been encouraging and indicate that in specific cases where the bond line thickness and other relevant parameters if can be maintained or presumed reasonably non variant, it is possible to effectively evaluate the integrity of a composite bonded joint.
16

Estudo do comportamento em fluência de juntas metálicas coladas / Study on creep behavior of bonded metal joints

Rodrigo Albani Queiroz 28 June 2013 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Juntas coladas têm se mostrado como a principal alternativa de união entre componentes fabricados em materiais distintos ou não, tendo como vantagem principal a ausência de aporte de calor e melhor distribuição de tensões. A literatura mostra que estudos anteriores foram realizados com o objetivo de caracterizar diversas propriedades associados às juntas, porém, pouco ainda se conhece sobre o comportamento dessas uniões relacionado à fluência. Os ensaios de fluência têm como principal desvantagem a baixa produtividade de resultados visto que, na maioria dos casos, os equipamentos aptos a realizarem este tipo de teste ensaiam apenas um corpo de prova por vez. Neste caso, o tratamento estatístico é baseado em uma pequena quantidade de resultados, reduzindo a confiabilidade na predição do comportamento em fluência. O Laboratório de Adesão e Aderência (LAA/UERJ/IPRJ) desenvolveu o equipamento pneumático de fluência (EPF) capaz de realizar dez ensaios simultâneos com parâmetros distintos. Este trabalho investiga o comportamento de juntas de cisalhamento simples (SLJ) compostas por substratos metálicos colados com adesivo epóxi e poliuretano. As juntas foram fabricadas em conformidade a norma ASTM D 1002, seguindo procedimento de preparo RT-003/08 TMC/CENPES/PETROBRAS. Os resultados mostram que, para projetos onde esteja prevista utilização das juntas durante longos períodos de tempo sob carregamento, conhecer apenas suas tensões médias de ruptura não é o suficiente para garantir a segurança do empreendimento. É proposto um modelo inicial do comportamento sob fluência de juntas coladas. / Bonded joints have been used as the main alternative to join components made of different materials, especially because high temperatures, like in welding process, are not required and because tensions are better distributed. Literature shows that although prior studies focused on the evolution of several mechanical properties related to joints, little is known about the creep behavior of bonded joints. Creep testings main disadvantage is the low productivity of results, since that, in most cases, testing machines capable of performing these tests only test one joint at a time. In this case, statistical treatment is made based on a small amount of results, reducing the reliability of the predictions. Thus, the Laboratory of Adhesion and Adherence (LAA/UERJ/IPRJ) developed a pneumatic creep equipment (PCE), capable of testing ten specimens simultaneously, under distinct scenario. This work looks into the behavior of single-lap joints (SLJ) made of metallic substrate and bonded with epoxy and polyurethane adhesives. The joints were produced according to ASTM D 1002 standard, following the RT-003/08 TMC/CENPES/PETROBRAS repair procedure. Results show that, for long term applications, knowing the average tensile strength of the joints isnt enough to guarantee project safety. An initial model for the creep behavior of bonded joints is proposed.
17

Programa para análise de juntas coladas: compósito/compósito e metal/compósito / Software for analyses of bonded joints: composite-composite and metal-composite

Ribeiro, Marcelo Leite 18 March 2009 (has links)
O presente trabalho consiste basicamente no desenvolvimento de um programa de engenharia denominado SAJ (sistema de análise de juntas) capaz de realizar uma análise detalhada do comportamento de dois dos diversos tipos de juntas coladas existentes, a junta simples colada (\"single lap joint\") e a junta dupla colada (\"double lap joint\"). Sendo que foram analisadas juntas coladas com aderentes de material compósito ou, então, compostas de aderentes de compósitos e metal. O programa de engenharia desenvolvido possibilita o cálculo das tensões, dos esforços e dos deslocamentos nessas juntas. Para validar o referido programa, os resultados obtidos do mesmo foram confrontados com os resultados obtidos para condições semelhantes utilizando \"softwares\" comerciais de elementos finitos e de cálculo de juntas. Após a validação do programa, são apresentados alguns estudos de fatores que influenciam na resistência da junta colada, verificando a influência do comprimento de \"overlap\" (sobreposição), a rigidez do adesivo e a espessura da camada adesiva. Também é apresentada uma análise de falha dos aderentes de compósito evidenciando assim, as potencialidades e limitações desta ferramenta computacional para a área de desenvolvimento de produto. / This work consists on the development of software called SAJ which can analyze a bonded joint behavior in detail, not only for single lap joint, but also, for double lap joint. These joints could be made of composite/composite materials or metal/composite as adherentes. The software developed can calculate the joints stresses, loads and displacements. The results obtained are compared to the results obtained using commercial software and the same problems proposed. After the validation of SAJ, some studies were performed in order to determine how some characteristics affect the joint stresses distribution as overlap length, adhesive elastic modulus, adhesive thickness and a failure analysis of composite adherents showing the potential and limitation of this computational tool for the product development area.
18

Fabricação e controle de espessura de juntas coladas single lap joint: caracterização mecânica dos aderentes e do adesivo / Manufacture and thickness control of single lap joints: mechanical properties characterization of adherents and adhesive

Madureira, Fernando 28 September 2018 (has links)
Devido a suas vantagens comparadas aos métodos tradicionais de união mecânica, a utilização de juntas coladas estruturais só tende a crescer, entretanto, devido suas propriedades e modos de falha dependerem de diversos parâmetros (tratamento superficial, geometria, material, condições de tralho, etc.) uma utilização mais ampla desta técnica ainda é restrita pela ausência de modelos de falhas confiáveis. O presente trabalho consiste na apresentação de métodos para fabricação de juntas coladas em material compósito e verificação da influência da espessura da camada adesiva na resistência de juntas simples coladas (single lap joints) submetidas à tração. São também apresentados métodos para fabricação dos aderentes, corpos de prova de adesivo puro para ensaios de caracterização e realização de ensaios mecânicos para obtenção das propriedades mecânicas tanto dos aderentes quanto do adesivo. As propriedades mecânicas dos aderentes e do adesivo foram obtidas através de ensaios realizados em uma máquina de tração universal com o auxílio da técnica de correlação digital de imagem, e a obtenção das energias críticas de resistência à fratura (GIc,GIIc) da camada adesiva foram calculadas através de ensaios Double Cantilever Beam (DCB) e End Notched Flexure (ENF). Foram estudados métodos para gerar falha coesiva nas juntas adesivas, sendo que o melhor método encontrado foi o de tratamento superficial dos aderentes com jateamento abrasivo seguido pela limpeza superficial com acetona. O controle preciso da espessura da camada adesiva foi alcançado através do desenvolvimento de um dispositivo de fácil construção, compostos por suportes de madeira, hastes e linhas de nylon. Nos ensaios em juntas coladas foi constatado uma relação inversamente proporcional entre a espessura da camada adesiva e a resistência máxima suportada pela junta, ou seja, quanto maior a espessura do adesivo menor sua resistência. Os métodos aqui apresentados foram os resultados de vários meses de estudo e compreensão das normas e técnicas disponíveis na literatura, o aprimoramento das técnicas foram frutos de um ciclo compostos por fabricação, testes e análise de resultados. / Amongst the joining techniques, adhesively bonding joints are one of the most commonly applied nowadays. However, a lack of reliable failure criteria still exists, limiting in this way a more widespread application of adhesively bonded joints in principal load-bearing structural applications. An accurate strength prediction of the adhesively bonded joints is essential to decrease the amount of expensive testing at the design stage. This work consists to show methods for manufacturing single lap joints and to verify the adhesive thickness influence on the joint resistance. The manufacturing process of the composite adherends and adhesives for bulk tests was also covered. The mechanical properties of the adherends and bulk adhesive were performed on a universal testing machine with assistance of a digital image correlation (DIC) technique. The fracture toughness energy release rates (GIc,GIIc) of the adhesive layer were obtained respectively through Double Cantilever Beam (DCB) and End Notched Flexure (ENF) tests. Cohesive failure was achieved by grit blasting the adherents followed by cleaning with acetone. A constant adhesive thickness was guaranteed by placing nylon fishing lines between the adherents. Single lap joints tests showed that the joint resistance decrease with increasing adhesive thickness.
19

Estudo do comportamento em fluência de juntas metálicas coladas / Study on creep behavior of bonded metal joints

Rodrigo Albani Queiroz 28 June 2013 (has links)
Fundação Carlos Chagas Filho de Amparo a Pesquisa do Estado do Rio de Janeiro / Juntas coladas têm se mostrado como a principal alternativa de união entre componentes fabricados em materiais distintos ou não, tendo como vantagem principal a ausência de aporte de calor e melhor distribuição de tensões. A literatura mostra que estudos anteriores foram realizados com o objetivo de caracterizar diversas propriedades associados às juntas, porém, pouco ainda se conhece sobre o comportamento dessas uniões relacionado à fluência. Os ensaios de fluência têm como principal desvantagem a baixa produtividade de resultados visto que, na maioria dos casos, os equipamentos aptos a realizarem este tipo de teste ensaiam apenas um corpo de prova por vez. Neste caso, o tratamento estatístico é baseado em uma pequena quantidade de resultados, reduzindo a confiabilidade na predição do comportamento em fluência. O Laboratório de Adesão e Aderência (LAA/UERJ/IPRJ) desenvolveu o equipamento pneumático de fluência (EPF) capaz de realizar dez ensaios simultâneos com parâmetros distintos. Este trabalho investiga o comportamento de juntas de cisalhamento simples (SLJ) compostas por substratos metálicos colados com adesivo epóxi e poliuretano. As juntas foram fabricadas em conformidade a norma ASTM D 1002, seguindo procedimento de preparo RT-003/08 TMC/CENPES/PETROBRAS. Os resultados mostram que, para projetos onde esteja prevista utilização das juntas durante longos períodos de tempo sob carregamento, conhecer apenas suas tensões médias de ruptura não é o suficiente para garantir a segurança do empreendimento. É proposto um modelo inicial do comportamento sob fluência de juntas coladas. / Bonded joints have been used as the main alternative to join components made of different materials, especially because high temperatures, like in welding process, are not required and because tensions are better distributed. Literature shows that although prior studies focused on the evolution of several mechanical properties related to joints, little is known about the creep behavior of bonded joints. Creep testings main disadvantage is the low productivity of results, since that, in most cases, testing machines capable of performing these tests only test one joint at a time. In this case, statistical treatment is made based on a small amount of results, reducing the reliability of the predictions. Thus, the Laboratory of Adhesion and Adherence (LAA/UERJ/IPRJ) developed a pneumatic creep equipment (PCE), capable of testing ten specimens simultaneously, under distinct scenario. This work looks into the behavior of single-lap joints (SLJ) made of metallic substrate and bonded with epoxy and polyurethane adhesives. The joints were produced according to ASTM D 1002 standard, following the RT-003/08 TMC/CENPES/PETROBRAS repair procedure. Results show that, for long term applications, knowing the average tensile strength of the joints isnt enough to guarantee project safety. An initial model for the creep behavior of bonded joints is proposed.
20

Fabricação e controle de espessura de juntas coladas single lap joint: caracterização mecânica dos aderentes e do adesivo / Manufacture and thickness control of single lap joints: mechanical properties characterization of adherents and adhesive

Fernando Madureira 28 September 2018 (has links)
Devido a suas vantagens comparadas aos métodos tradicionais de união mecânica, a utilização de juntas coladas estruturais só tende a crescer, entretanto, devido suas propriedades e modos de falha dependerem de diversos parâmetros (tratamento superficial, geometria, material, condições de tralho, etc.) uma utilização mais ampla desta técnica ainda é restrita pela ausência de modelos de falhas confiáveis. O presente trabalho consiste na apresentação de métodos para fabricação de juntas coladas em material compósito e verificação da influência da espessura da camada adesiva na resistência de juntas simples coladas (single lap joints) submetidas à tração. São também apresentados métodos para fabricação dos aderentes, corpos de prova de adesivo puro para ensaios de caracterização e realização de ensaios mecânicos para obtenção das propriedades mecânicas tanto dos aderentes quanto do adesivo. As propriedades mecânicas dos aderentes e do adesivo foram obtidas através de ensaios realizados em uma máquina de tração universal com o auxílio da técnica de correlação digital de imagem, e a obtenção das energias críticas de resistência à fratura (GIc,GIIc) da camada adesiva foram calculadas através de ensaios Double Cantilever Beam (DCB) e End Notched Flexure (ENF). Foram estudados métodos para gerar falha coesiva nas juntas adesivas, sendo que o melhor método encontrado foi o de tratamento superficial dos aderentes com jateamento abrasivo seguido pela limpeza superficial com acetona. O controle preciso da espessura da camada adesiva foi alcançado através do desenvolvimento de um dispositivo de fácil construção, compostos por suportes de madeira, hastes e linhas de nylon. Nos ensaios em juntas coladas foi constatado uma relação inversamente proporcional entre a espessura da camada adesiva e a resistência máxima suportada pela junta, ou seja, quanto maior a espessura do adesivo menor sua resistência. Os métodos aqui apresentados foram os resultados de vários meses de estudo e compreensão das normas e técnicas disponíveis na literatura, o aprimoramento das técnicas foram frutos de um ciclo compostos por fabricação, testes e análise de resultados. / Amongst the joining techniques, adhesively bonding joints are one of the most commonly applied nowadays. However, a lack of reliable failure criteria still exists, limiting in this way a more widespread application of adhesively bonded joints in principal load-bearing structural applications. An accurate strength prediction of the adhesively bonded joints is essential to decrease the amount of expensive testing at the design stage. This work consists to show methods for manufacturing single lap joints and to verify the adhesive thickness influence on the joint resistance. The manufacturing process of the composite adherends and adhesives for bulk tests was also covered. The mechanical properties of the adherends and bulk adhesive were performed on a universal testing machine with assistance of a digital image correlation (DIC) technique. The fracture toughness energy release rates (GIc,GIIc) of the adhesive layer were obtained respectively through Double Cantilever Beam (DCB) and End Notched Flexure (ENF) tests. Cohesive failure was achieved by grit blasting the adherents followed by cleaning with acetone. A constant adhesive thickness was guaranteed by placing nylon fishing lines between the adherents. Single lap joints tests showed that the joint resistance decrease with increasing adhesive thickness.

Page generated in 0.0937 seconds