• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 11
  • 10
  • 8
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 33
  • 29
  • 22
  • 20
  • 16
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Préparation de nouveaux aminoalcools chiraux à partir de l'isosorbide : applications en catalyse asymétrique / Synthesis of new class of chiral aminoalcohol ligands derived from isosorbide and thier applications in asymetric catalysis

Huynh, Khanh Duy 19 December 2011 (has links)
De nouveaux β-aminoalcools chiraux ont été synthétisés en 3 à 4 étapes avec de bons rendements globaux (19-42%). Ils ont été testés en tant que ligands dans la réaction de réduction de cétones aromatiques par transfert d’hydrogène. Des excès énantiomériques jusqu’à 91% ont été obtenus avec de bonnes conversions jusqu’à 99%. La réduction asymétrique de cétones aromatique par le borane a été également étudiée. Ces β-aminoalcools se sont montrés actifs mais pas très énantiosélectifs. Ces composés ont également été utilisés en tant que ligands dans la réaction d’addition du diéthylzinc sur des aldéhydes aromatique conduisant aux produits désirés avec de bons rendements (jusqu’à 98%) et de bonnes énantiosélectivités (jusqu’à 80%). En revanche, la réaction d’addition d’autres organométalliques (l’organozincique, le silane, l’étain et le nickel) sur aldéhydes montre de faible énantiosélectivité dans la plupart de cas.Dans la dernière partie de ce travail, un des β-aminoalcools synthétisés a été évalué dans la réaction de cyanation catalytique énantiosélective d’aldimines. Malgré des bonnes conversions obtenues, des faible énantiosélectivités ont été observées. / Chiral β-aminoalcohol compounds were prepared in 3 or 4 steps from isosorbide in good overall yields (19-42%). These compounds were used as ligands in the asymmetric transfer hydrogenation of aromatic ketones giving good enantioselectivities (up to 91% ee) and excellent conversions (up to 99%). The asymmetric reduction of aromatic ketones by borane complexes using these aminoalcohols was also evaluated. Good catalytic activity but low enantioselectivity were observed. Asymmetric addition of diethylzinc to aromatic aldehydes using these β-aminoalcohols was also studied leading to desired products in good yields (up to 98%) and good enantioselectivities (up to 80%). However, no asymmetric induction was observed when using other organometallics (organozinc, silane, nickel, tin).The last part of this work consisted in evaluating one of these β-aminoalcohols in the Titanium-catalyzed asymmetric cyanation of aldimines. Despite good conversions, low enantioselectivities were observed.
82

Synthesis And Characterization Of Water Soluble Polymer Stabilized Transition Metal(0) Nanoclusters As Catalyst In Hydrogen Generation From The Hydrolysis Of Sodium Borohydride And Ammonia Borane

Metin, Onder 01 December 2010 (has links) (PDF)
Metal nanoclusters exhibit unique properties which differ from their bulk materials, owing to the quantum size effects. For example, the catalytic activity of transition metal nanoclusters generally increases with decreasing particle size. However, nanoclusters tend to be fairly unstable with respect to the agglomerate into bulk metal in solution and thus special precautions have to be taken to avoid their aggregation or precipitation during the preparation of such nanoclusters in solution. In order to obtain stable nanoclusters dispersed in solution, a stabilizing agent is usually added into the reaction system. The stabilization of metal nanoclusters in solution can be achieved either by electrostatically by using charged ions such as acetate ion or sterically by long chain molecules such as polymers. Polymers are one of the most widely used steric stabilizers for the preparation of stable metal nanoclusters in solution. The use of polymers as stabilizer for the synthesis of transition metal nanoclusters provides advantegous regarding solubility, conductivity, thermal stability and reusability. The metal nanoclusters stabilized by polymers generally show higher catalytic activity, stability and optical properties. In this dissertation we report the preparation and characterization of water soluble polymer stabilized transition metal(0) (metal= Ni, Co and Ru) nanoclusters and their v catalysis in hydrogen generation from the hydrolysis of sodium borohydride (NaBH4) and ammonia borane (AB) which are the best candidates as chemical hydrogen storage materials for on-board applications. The water soluble polymer stabilized nickel(0), cobalt(0) and ruthenium(0) nanoclusters were prepared by using two different facile methods / (i) the reduction of metal precursors by sodium borohydride in the presence poly(N-vinyl pyrrolidone) (PVP) in methanol solution after 1h reflux, (ii) the in situ generation during the hydrolysis of ammonia borane in the presence of poly(4-styrene sulfonicacid-co-maleic acid) (PSSA-co-MA). The characterization of both type of polymer stabilized transition metal(0) nanoclusters were done by using UV-Visible electronic absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and FT-IR techniques. The catalytic activity of PVP stabilized nickel(0), cobalt(0) and ruthenium(0) nanoclusters was tested in the hydrolysis of NaBH4 and AB. The catalytic acitivity of PSSA-co-MA stabilized nickel(0), cobalt(0) and ruthenium(0) nanoclusters was tested only in the hydrolysis of AB in which they were in situ generated. The kinetics of hydrogen generation from both hydrolysis reactions in the presence PVP or PSSA-co-MA stabilized nickel(0), cobalt(0) and ruthenium(0) nanoclusters were studied depending on the polymer to metal ratio, catalyst concentration, substrate concentration and temperature as well as the activation parameters (Arrhenius activation energy (Ea), activation enthalpy (
83

Synthèse stéréosélective de centres tertiaires et quaternaires par voie radicalaire et leur application à la synthèse d’analogues de nucléosides et de polypropionate

Tambutet, Guillaume 04 1900 (has links)
No description available.
84

Mechanistic Insights Into Small Molecule (Amine-Boranes, Hydrogen, Methane, Formic Acid Carbon dioxide) Activation Using Electrophilic Ru(II)-Complexes

Kumar, Rahul January 2016 (has links) (PDF)
Current fossil fuels (Coal and Petroleum) based economy is not sustainable in the long run because of its dwindling resources, and increasing concerns of climate change due to excessive carbon dioxide (CO2) emission. To mitigate CO2 emission and climate change, scientists across the world have been looking for clean and sustainable energy sources. Among them hydrogen gas (H2) could be more promising because it is the most clean fuel and can be produced from cheap source (water) which is renewable and abundant. Nevertheless, the bottleneck for hydrogen economy is lying in the cost of hydrogen production from water. Still there are no any efficient systems developed which can deliver hydrogen from water in economically viable way. Meanwhile, recent research on old molecule ammonia-borane (H3N•BH3, AB) as hydrogen source has increased the hope towards the hydrogen economy, however, catalytic recycling (or efficient regeneration) of AB from the dehydrogenated product polyborazylene (PB or BNHx) is the biggest hurdle which prevents use of AB as practical hydrogen storage material. Therefore, it is imperative to understand the dehydrogenation pathways of ammonia-borane (or related amine-boranes) which lead to polymeric or oligomeric product(s). On the other hand, methane (CH4) is abundant (mostly untamed) but cleaner fuel than its higher hydrocarbon analogs. To develop highly efficient catalytic systems to transform CH4 into methanol (gas to liquid) is of paramount importance in the field of catalysis and it could revolutionize the petrochemical industry. Therefore, to activate CH4, it is crucial to understand its binding interaction with metal center of a molecular catalyst under homogenous condition. However, these interactions are too weak and hence σ–methane complexes are very elusive. In this context, σ-H2 and σ-borane complexes bear some similarities in σ-bond coordination (and four coordinated boranes are isoelectronic with methane) could be considered as good models to study σ-methane complexes. Studying the H−H and B−H bond activation in H2 and amine-boranes, respectively, would provide fundamental insights into methane activation and its subsequent functionalization. Moreover, the proposed methanol economy by Nobel laureate George Olah seems more promising because methanol can be produced from CH4 (CO2 as well). This in turn will gradually reduce the amount of two powerful greenhouse gases from the earth’s atmosphere. Thus, efficient and economic production of methanol from CH4 and CO2 is one of most challenging problems of today in the field of catalysis and regarded as the holy grails. Furthermore, very recently formic acid (HCOOH) is envisaged as a promising reversible hydrogen storage material because it releases H2 and CO2 in the presence of a suitable and efficient catalyst or vice versa under ambient conditions. Objective of the research work: Taking the account of the above facts, the research work in this thesis is mostly confined to utilize electrophilic Ru(II)-complexes for activation of small molecules such as ammonia-borane (H3N•BH3) [and related amine-borane (Me2HN•BH3)], hydrogen (H2), methane (CH4), formic acid (HCOOH) and carbon dioxide (CO2) and investigation of their mechanistic pathways using NMR spectroscopy under homogeneous conditions. Though these molecules are small, they have huge impacts on chemical industries (energy sector and chemical synthesis: drugs/natural products) and environment [CO2 and CH4 are potent green house gases] as well. However, they are relatively inert molecules, especially CH4 and CO2, and impose very tough challenges to activate and functionalize them into useful products under ambient conditions. The partial oxidation of the strong C−H bond in CH4 for its transformation into methanol under relatively mild condition using an organometallic catalyst is considered as a holy grail in the field of catalysis which is mentioned earlier. More importantly, to develop better and highly efficient homogeneous catalytic systems for the activation of these molecules, it is imperative to understand the mechanistic pathways using well defined homogeneous metal complexes. Thus, an understanding of the interaction of these inert molecules with metal center is obligatory. In this context, discovery of a σ-complex of H2 gave remarkable insights into H−H bond activation pathways and its implications in catalytic hydrogenation reactions. Subsequently, σ-borane complexes of amine-boranes were discovered and found to be relatively more stable because of stronger M−H−B interaction and hence act as good models to study the M−H−C interaction of elusive σ-methane complex. On the other hand, HCOOH, a promising hydrogen storage material and its efficient catalytic dehydrogenation/decarboxylation and CO2 hydrogenation back to HCOOH using well defined homogeneous catalysts could lead to a sustainable energy cycle. Therefore, it is quite significant to understand the mechanistic pathways of formic acid dehydrogenation/decarboxylation and carbon dioxide reduction to formic acid for the development of next generation efficient catalysts. Chapter highlights: Keeping all these in view, we carried out thorough studies on the activation of these small molecules by electrophilic Ru(II)-complexes. This thesis provides useful insights and perspective on the detailed investigation of mechanistic pathways for the activation of small molecules such as H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2 using electrophilic Ru(II)-complexes under homogeneous conditions using NMR spectroscopy. In Chapter 1 we provide brief overview of small molecule activation using organometallic complexes. This chapter presents pertinent and latest results from literature on the significance of small molecule activation. Although there are several small molecules which need our attention, however, we have focused mainly on H3N•BH3 [and Me2HN•BH3], H2, CH4, HCOOH and CO2. In Chapter 2, we present detailed investigation of mechanistic pathways of B−H bond activation of H3N•BH3 and Me2HN•BH3 using electrophilic [RuCl(dppe)2][OTf] complex using NMR spectroscopy as a model for methane activation. In these reactions, using variable temperature (VT) 1H, 31P{1H} and 11B NMR spectroscopy we detected several intermediates en route to the final products at room temperature including a σ-borane complex. On the basis of elaborative studies using NMR spectroscopy, we have established the complete mechanistic pathways for dehydrogenation of H3N•BH3/Me2HN•BH3 and formation of B−H bond activated/cleaved products along with several Ru-hydride and Ru-(dihydrogen) complexes. Keeping the B−H bond activation of amine-boranes in view as a model for methane activation, we attempted to activate methane using [RuCl(dppe)2][OTf] complex. In addition, [Ru(OTf)(dppe)2][OTf] complex having better electrophilicity than [RuCl(dppe)2][OTf], was synthesized and characterized. The [Ru(OTf)(dppe)2][OTf] complex has highly labile triflate bound to Ru-metal and therefore its reactivity studies toward H2 and CH4 were carried out where H2 activation was successfully achieved, however, no any spectroscopic evidence was found for C−H bond activation of CH4. The Chapter 3 describes the synthesis and characterization of several Ru-Me complexes such as trans-[Ru(Me)Cl(dppe)2], [Ru(Me)(dppe)2][OTf], trans-[Ru(Me)(L)(dppe)2][OTf] (L = CH3CN, tBuNC, tBuCN, H2) with an aim to trap corresponding σ-methane intermediate at low temperature. However, interestingly, we observed spontaneous but gradual methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] complex at room temperature. We thoroughly investigated mechanistic details of methane elimination and orthometalation of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy, NOESY and DFT calculations. Furthermore, H2 activation was confirmed unambiguously by [Ru(Me)(dppe)2][OTf] and Ru-orthometalated complexes using NMR spectroscopy under ambient conditions. An effort was also made to activate methane using Ruorthometalated complex in pressurized condition of methane in a pressure stable NMR tube. Moreover, preliminary studies on protonation reaction of [Ru(Me)(dppe)2][OTf] using VT NMR spectroscopy to trap σ-methane at low temperature was carried out which provided us some useful information on dynamics between proton and Ru-Me species. The Chapter 4 provides useful insights into the mechanistic pathways of dehydrogenation/decarboxylation of formic acid using [RuCl(dppe)2][OTf]. Catalytic dehydrogenation of HCOOH using [RuCl(dppe)2][OTf] was observed in presence of Hunig base (proton sponge). In addition, a complex [Ru(CF3COO)(dppe)2][OTf] was synthesized and characterized using NMR spectroscopy, and found to readily dehydrogenate HCOOH. Moreover, preliminary results on transfer hydrogenation of CO2 into formamide using [RuCl(dppe)2][OTf] as a precatalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source was confirmed using 13C NMR spectroscopy. The mechanisms were proposed for HCOOH dehydrogenation and transfer hydrogenation of CO2 based on our NMR spectroscopic studies. Furthermore, a few test reactions of transfer hydrogenation of selected alkenes such as cyclooctene, acrylonitrile, 1-hexene using [RuCl(dppe)2][OTf] as pre-catalyst and tert-butyl amine-borane (tBuH2N•BH3) as secondary hydrogen source showed quantitative conversion to hydrogenated products.
85

Synthesis, structural investigations and evaluation of pyrazine sensitizers for lanthanides emitting in near-infrared and novel phosphine derivatives / Synthèse, étude structurale et évaluation de sensibilisateurs pyraziniques de lanthanides émettant dans le proche infrarouge et de nouvelles phosphines

Cieślikiewicz-Bouet, Monika 18 October 2012 (has links)
En raison de l’omniprésence des hétérocycles azotés et de leurs propriétés biologiques, une attention particulière est accordée au développement de méthodologie pour leur synthèse et leur fonctionnalisation. L’étude de la fonctionnalisation d’énamides constitue une thématique importante car ces motifs s’avèrent être des outils synthétiques polyvalents permettant d’accéder à des dérivés hétérocycliques complexes. Les réactions de couplage Pd-catalysées constituent une méthode de choix rapide et efficace pour la synthèse d'énamides, notamment à partir de phosphates d'énols issus de lactames, d’imides ou d’amides. Le premier chapitre de ce travail porte sur le couplage organopalladié C-P de phosphines boranes secondaires chirales ou achirales avec des phosphates d’énols. Ce couplage C-P original, réalisé dans des conditions douces, conduit aux énamido-phosphines boranes correspondantes et offre de nombreuses possibilités pour la constitution d’une librairie de phosphines originales. Parallèlement à ce travail, l’addition nucléophile d’anions phosphures sur divers ène-carbamates acycliques conduit à des acides alpha-aminés béta-phosphorés originaux, porteurs d’un carbone quaternaire en alpha de l’azote. Le deuxième chapitre de la thèse porte sur la préparation et la caractérisation de chromophores organiques originaux basés sur un noyau pyrazinique et qui sont susceptibles de présenter des propriétés de fluorescence. Ces composés sont conçus pour former des nouveaux systèmes sensibilisateurs de cations de lanthanides, et être utilisés comme sensibilisateurs organiques pour l'imagerie moléculaire dans le proche infrarouge. / On account of the ubiquity of nitrogen heterocycles and their biological properties, the great attention is paid to developing methodologies of their synthesis and functionalization. For this purpose, the study of functionalization of enamides constitutes an important topic due to the utility of these motifs in the construction of complex heterocyclic derivatives. Palladium-catalyzed reactions of cross- coupling are rapid and efficient methods of choice for synthesis of enamides particularly starting from enol phosphates derived from lactams, imides or amides. The first chapter of the thesis evokes the original C-P coupling reaction of chiral and achiral secondary phosphine boranes with different enol phosphates in mild reaction conditions, leading to corresponding enamido-phosphine boranes. This methodology permits the construction of libraries of novels phosphines. Also, the reaction of nucleophilic addition of phosphide anions onto various enecarbamates acyclic was elaborated, giving an access to original beta-phosphino alpha-amino acids, bearing the quaternary carbon on alpha position to nitrogen. The second chapter is devoted to the preparation and characterization of organic chromophores based on the pyrazinic core, which are likely to exhibit the fluorescence properties. These compounds were designed to form new sensitizing systems for lanthanide cations and could be used as organic sensitizers for molecular imaging in near infrared.
86

Modulation of Nanostructures in the Solid and Solution States and under an Electron Beam

Sanyal, Udishnu January 2013 (has links) (PDF)
Among various nanomaterials, metal nanoparticles are the widely studied ones because of their pronounced distinct properties arising in the nanometer size regime, which can be tailored easily by tuning predominantly their size and shape. During the past few decades, scientists are engaged in developing new synthetic methodologies for the synthesis of metal nanoparticles which can be divided into two broad categories: i) top-down approach, utilizing physical methods and ii) bottom-up approach, employing chemical methods. As the chemical methods offer better control over particle size, numerous chemical methods have been developed to obtain metal nanoparticles with narrow size distribution. However, these two approaches have their own merits and demerits; they are not complementary to each other and also not sustainable for real time applications. Recent focus on the synthesis of metal nanoparticles is towards the development of green and sustainable synthetic methodologies. A solid state route is an exciting prospect in this direction because it eliminates usage of organic solvents thus, makes the overall process green and at the same time leads to the realization of large quantity of the materials, which is required for many applications. However, the major obstacle associated with the development of a solid state synthetic route is the lack of fundamental understanding regarding the formation mechanism of the nanoparticles in the solid state. Additionally, due to the heterogeneity present in the solid mixture, it is very difficult to ensure the proximity between the capping agent and nuclei which plays the most decisive role in the growth process. Recently, employment of amine–borane compounds as reducing agents emerged as a better prospect towards the development of sustainable synthetic routes for metal nanoparticles because they offer a variety of advantages over the traditional borohydrides. Being soluble in organic medium, amine– borane allows the reaction to be carried out in a single phase and due to its mild reducing ability a much better control over the nucleation and growth processes is realized. However, the most exciting feature of these compounds is that their reducing ability is not only limited to the solution state, they can also bring out the reduction of metal ions in the solid state. With the availability of a variety of amine–boranes of varying reducing ability, it opens up a possibility to modulate the nanostructure in both solid and solution states by a judicious choice of reducing agent. Although our current understanding regarding the growth behavior of nanoparticles has advanced remarkably, however, most often it is some classical model which is invoked to understand these processes. With the recent developments in in situ transmission electron microscopy techniques, it is now possible to unravel more complex growth trajectories of nanoparticles. These studies not only expand the scope of the present knowledge but also opens up possibilities for many future developments. Objectives • To develop an atom economy solid state synthetic methodology for the synthesis of metal nanoparticles employing amine–boranes as reducing agents. • To gain a mechanistic insight into the formation mechanisms of nanoparticles in the solid state by using amine–boranes with differing reducing ability. • Synthesis of bimetallic nanoparticles as well as supported metal nanoparticles in the solid state using ammonia borane as the reducing agent. • To develop a new in situ seeding growth methodology for the synthesis of core@shell nanoparticles composed of noble metals by employing a very weak reducing agent, trimethylamine borane and their transformation to their thermodynamically stable alloy counterparts. • Synthesis of highly monodisperse ultra-small colloidal calcium nanoparticles with different capping agents such as hexadecylamine, octadecylamine, poly(vinylpyrrolidone) and a combination of hexadecylamine/poly(vinylpyrrolidone) using the solvated metal atom dispersion (SMAD) method. To study the coalescence behavior of a pair of calcium nanoparticles under an electron beam by employing in situ TEM technique. Significant results An atom economy solid state synthetic route has been developed for the synthesis of metal nanoparticles from simple metal salts using amine–boranes as reducing agents. Amine–borane plays a dual role here: acts as a reducing agent thus brings out the reduction of metal ions and decomposes simultaneously to generate B-N based compounds which acts as a capping agent to stabilize the particles in the nanosize regime. This essentially minimizes the number of reagents used and hence simplifying and eliminating the purification procedures and thus, brings out an atom economy to the overall process. Additionally, as the reactions were carried out in the solid state, it eliminates use of organic solvents which have many adverse effects on the environment, thus makes the synthetic route, green. The particle size and the size distribution were tuned by employing amine–boranes with differing reducing abilities. Three different amine–boranes have been employed: ammonia borane (AB), dimethylamine borane (DMAB), and trimethylamine borane (TMAB) whose reducing ability varies as AB > DMAB >> TMAB. It was found that in case of AB, it is the polyborazylene or BNHx polymer whereas, in case of DMAB and TMAB, the complexing amines act as the stabilizing agents. Several controlled studies also showed that the rate of addition of metal salt to AB is the crucial step and has a profound effect on the particle size as well as the size distribution. It was also found that an optimum ratio of amine–borane to metal salt is important to realize the smallest possible size with narrowest size distribution. Whereas, use of AB and TMAB resulted in the smallest sized particles with best size distribution, usage of DMAB provided larger particles that are also polydisperse in nature. Based on several experiments along with available data, the formation mechanism of metal nanoparticles in the solid state has been proposed. Highly monodisperse Cu, Ag, Au, Pd, and Ir nanoparticles were realized using the solid state route described herein. The solid state route was extended to the synthesis of bimetallic nanoparticles as well as supported metal nanoparticles. Employment of metal nitrate as the metal precursor and ammonia borane as the reducing agent resulted in highly exothermic reaction. The heat evolved in this reaction was exploited successfully towards mixing of the constituent elements thus allowing the alloy formation to occur at much lower temperature (60 oC) compared to the traditional solid state metallurgical methods (temperature used in these cases are > 1000 oC). Synthesis of highly monodisperse 2-3 nm Cu/Au and 5-8 nm Cu/Ag nanoparticles were demonstrated herein. Alumina and silica supported Pt and Pd nanoparticles have also been prepared. Use of ammonia borane as the reducing agent in the solid state brought out the reduction of metal ions to metal nanoparticles and the simultaneous generation of BNHx polymer which encapsulates the metal (Pt and Pd) nanoparticles supported on support materials. Treatment of these materials with methanol resulted in the solvolysis of BNHx polymer and its complete removal to finally provide metal nanoparticles on the support materials. An in situ seeding growth methodology for the synthesis of bimetallic nanoparticles with core@shell architecture composed of noble metals has been developed using trimethylamine borane (TMAB) as the reducing agent. The key idea of this synthetic procedure is that, TMAB being a weak reducing agent is able to differentiate the smallest possible window of reduction potential and hence reduces the metal ions sequentially. A dramatic solvent effect was noted in the preparation of Ag nanoparticles: Ag nanoparticles were obtained at room temperature when dry THF was used as the solvent whereas, reflux condition was required to realize the same using wet THF as the solvent. However, no such behavior was noted in the preparation of Au and Pd nanoparticles wherein Au and Pd nanoparticles were obtained at room temperature and reflux conditions, respectively. This difference in reduction behavior was successfully exploited to synthesize Au@Ag, Ag@Au, and Ag@Pd nanoparticles. All these core@shell nanoparticles were further transformed to their alloy counterparts under very mild conditions reported to date. Highly monodisperse, ultrasmall, colloidal Ca nanoparticles with a size regime of 2-4 nm were synthesized using solvated metal atom dispersion (SMAD) method and digestive ripening technique. Hexadecylamine (HDA) was used as the stabilizing agent in this case. Employment of capping agent with a longer chain length, octadecylamine afforded even smaller sized particles. However, when poly(vinylpyrrolidone) (PVP), a branched chain polymer was used as the capping agent, agglomerated particles were realized together with small particles of 3-6 nm. Use of a combination of PVP and HDA resulted in spherical particles of 2-3 nm size with narrow size distribution. Growth of Ca nanoparticles via colaesence mechanism was observed under an electron beam. Employing in situ transmission electron microscopy technique, real time coalescence between a pair of Ca nanoparticles were detected and details of coalescence steps were analyzed.

Page generated in 0.2586 seconds