Spelling suggestions: "subject:"boron"" "subject:"doron""
561 |
Electrochemical Behavior of Carbon Nanostructured Electrodes: Graphene, Carbon Nanotubes, and Nanocrystalline DiamondRaut, Akshay Sanjay January 2014 (has links)
<p>The primary goals of this research were to investigate the electrochemical behavior of carbon nanostructures of varying morphology, identify morphological characteristics that improve electrochemical capacitance for applications in energy storage and neural stimulation, and engineer and characterize a boron-doped diamond (BDD) electrode based electrochemical system for disinfection of human liquid waste. </p><p>Carbon nanostructures; ranging from vertically aligned multiwalled carbon nanotubes (MWCNTs), graphenated carbon nanotubes (g-CNTs) to carbon nanosheets (CNS); were synthesized using a MPECVD system. The nanostructures were characterized by using scanning electron microscopy (SEM) and Raman spectroscopy. In addition to employing commonly used electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), a new technique was developed to evaluate the energy and power density of individual electrodes. This facilitated comparison of a variety of electrode materials without having to first develop complex device packaging schemes. It was found that smaller pore size and higher density of carbon foliates on a three-dimensional scaffold of carbon nanotubes increased specific capacitance. A design of experiments (DOE) study was conducted to explore the parametric space of the MWCNT system. A range of carbon nanostructures of varying morphology were obtained. It was observed that the capacitance was dependent on defect density. Capacitance increased with defect density.</p><p>A BDD electrode was characterized for use in a module designed to disinfect human liquid waste as a part of a new advanced energy neutral, water and additive-free toilet designed for treating waste at the point of source. The electrode was utilized in a batch process system that generated mixed oxidants from ions present in simulated urine and inactivated E. Coli bacteria. Among the mixed oxidants, the concentration of chlorine species was measured and was found to correlate to the reduction in E. Coli concentration. Finally, a new operating mode was developed that involved pulsing the voltage applied to the BDD anode led to 66% saving in energy required for disinfection and yet successfully reduced E. Coli concentration to less than the disinfection threshold.</p> / Dissertation
|
562 |
Development of Synthetic Processes and Characterization of BsubPcs with High Crystal Densities for Application in Organic Photovoltaic DevicesFulford, Mabel Victoria 11 July 2013 (has links)
The original goal of this thesis was to develop process chemistry to yield boron subphthalocyanine (BsubPc) derivatives which were previously difficult to access. Retrospectively, it was found that these compounds show extremely high density crystal packing in comparison to other known BsubPcs, and thus this also became a focus of the thesis. A process to synthesize and purify fluoro-BsubPc was developed. This led to a detailed comparison of the physical and chemical properties of the three halo-BsubPcs in order to answer the question of which halo-BsubPc is appropriate for different purposes. Through this work, the previously unpublished crystal structure of the oxygen bridged dimer, µ-oxo-BsubPc, was found. A process was subsequently developed for the practical synthesis of µ-oxo-BsubPc for use in vacuum deposition and a number of µ-oxo-BsubPc crystal polymorphs were found and analyzed. The properties of this group of compounds are discussed in the context of other known BsubPcs.
|
563 |
Development of Synthetic Processes and Characterization of BsubPcs with High Crystal Densities for Application in Organic Photovoltaic DevicesFulford, Mabel Victoria 11 July 2013 (has links)
The original goal of this thesis was to develop process chemistry to yield boron subphthalocyanine (BsubPc) derivatives which were previously difficult to access. Retrospectively, it was found that these compounds show extremely high density crystal packing in comparison to other known BsubPcs, and thus this also became a focus of the thesis. A process to synthesize and purify fluoro-BsubPc was developed. This led to a detailed comparison of the physical and chemical properties of the three halo-BsubPcs in order to answer the question of which halo-BsubPc is appropriate for different purposes. Through this work, the previously unpublished crystal structure of the oxygen bridged dimer, µ-oxo-BsubPc, was found. A process was subsequently developed for the practical synthesis of µ-oxo-BsubPc for use in vacuum deposition and a number of µ-oxo-BsubPc crystal polymorphs were found and analyzed. The properties of this group of compounds are discussed in the context of other known BsubPcs.
|
564 |
Hot Forming of Boron Steels with Tailored Mechanical Properties: Experiments and Numerical SimulationsGeorge, Ryan January 2011 (has links)
Hot forming of boron steels is becoming increasingly popular in the automotive industry due to the demands for weight reduction and increased safety requirements for new vehicles. Hot formed components offer a significant increase in strength over conventional cold-formed steels, which has allowed for reductions in material thickness (and thus weight) while maintaining the same strength. Hot formed components are typically used in structural applications to improve the integrity of the vehicle’s cabin in the event of a collision. It has been suggested, however, that the crash performance of certain hot formed parts may be increased by locally tailoring their mechanical properties to improve their energy absorption. The final microstructure of a hot formed part is driven by the rate at which it is cooled within the tooling during the forming and quenching process. By controlling the cooling rate of the part, it is possible to control the final microstructure, and thus the final mechanical properties.
This thesis outlines the experimental and numerical studies that were performed for the hot forming of a lab-scale B-pillar. A hot forming die set was developed which has both heating and cooling capabilities to control the local cooling rate of the blank as it is formed and quenched. The first aspect of this research is to produce a hot formed part which is representative of an industrial component, and then to numerically model the process to predict the final mechanical properties. The second aspect is to produce a hot formed part with tailored mechanical properties, such that there are regions of the part with very high strength (very hard) and other regions with increased ductility (softer). By tailoring the microstructure to meet the performance requirement of a hot formed part, it may be possible to optimize its crash behavior and also reduce the overall weight.
Cartridge heaters were installed into sections of the tooling allowing it to reach a maximum temperature of 400°C. Cooling channels are used in other sections to maintain it at approximately room temperature. Experiments were performed on 1.2 mm Usibor® 1500P steel at heated die temperatures ranging from 25°C to 400°C. In the fully cooled region, the Vickers hardness of the blank was measured to be 450 – 475 HV, on average. As the temperature of the heated region was increased, a significant softening trend was observed in the areas of the blank that were in contact with the heated tool. The greatest levels of softening occurred in the 400°C heated die trial. Hardness measurements as low as 234 HV were recorded, which represents a reduction in hardness of 49% compared to the fully cooled trials.
Numerical models of the experiments were developed using LS-DYNA and use of its advanced hot forming material model which allows for microstructure and hardness prediction within the final part. The numerical models have shown promising results in terms of predicting the hardness trends as the temperature of the die increases.
Thermal expansion of the tooling resulted in local changes in the geometry of the tooling which proved to be problematic during the forming and quenching stages of the process. The expansion caused unexpected changes in the part-die contact, and the resulting microstructures were altered. These thermal expansion issues were addressed in the current work by shimming the tooling; however, in future work the tooling should be designed to account for this expansion at the desired operating temperature.
|
565 |
Robust Design Of Lithium Extraction From Boron Clays By Using Statistical Design And Analysis Of ExperimentsBuyukburc, Atil 01 January 2003 (has links) (PDF)
In this thesis, it is aimed to design lithium extraction from boron clays
using statistical design of experiments and robust design methodologies. There
are several factors affecting extraction of lithium from clays. The most important
of these factors have been limited to a number of six which have been gypsum to
clay ratio, roasting temperature, roasting time, leaching solid to liquid ratio,
leaching time and limestone to clay ratio. For every factor, three levels have
been chosen and an experiment has been designed. After performing three
replications for each of the experimental run, signal to noise ratio
transformation, ANOVA, regression analysis and response surface methodology
have been applied on the results of the experiments. Optimization and
confirmation experiments have been made sequentially to find factor settings
that maximize lithium extraction with minimal variation. The mean of the
maximum extraction has been observed as 83.81% with a standard deviation
of 4.89 and the 95% prediction interval for the mean extraction is (73.729,
94.730). This result is in agreement with the studies that have been made in
the literature. However / this study is unique in the sense that lithium is extracted
from boron clays by using limestone directly from the nature, and gypsum as a
waste product of boric acid production. Since these two materials add about 20%
cost to the extraction process, the results of this study become important.
Moreover, in this study it has been shown that statistical design of experiments
help mining industry to reduce the need for standardization.
|
566 |
Gas Phase Reaction Kinetics Of Boron Fiber ProductionFirat, Fatih 01 August 2004 (has links) (PDF)
In the production of boron fibers using CVD technique, boron deposition and dichloroborane formation reactions take place in a reactor. Boron deposition reaction occurs at the surface while formation of dichloroborane is the result of both gas phase and surface reactions.
A CSTR type of reactor was designed and constructed from stainless steel to investigate the gas phase reaction kinetics and kinetic parameters of boron fibers produced from the reaction of boron trichloride and hydrogen gases in a CVD reactor. The gases were heated by passing through the two pipes which were located into the ceramic furnace and they were mixed in the CSTR. The effluent gas mixture of the reactor was quenched by passing through a heat exchanger. An FT-IR spectrophotometer was connected to the heat exchanger outlet stream to perform on-line chemical analysis of the effluent gas mixture. Experiments were carried out at atmospheric pressure and a reactor temperature range of 300-600 º / C with different inlet reactant concentrations. The analysis of the FT-IR spectra indicated that the gas phase reaction and the surface reaction started at reactor temperatures above 170 º / C and 500º / C, respectively. It was concluded that reaction rate of the product increased with an increase in the inlet concentration of both reactants (BCl3 and H2) and with an increase in the reactor temperature. The gas phase reaction rate was expressed in terms of a th and b th orders with respect to the inlet concentrations of BCl3 and H2. The activation energy of the gas phase reaction, a and b were found to be 30.156 , 0.54 and 0.64, respectively. The correlation coefficient was 0.9969.
|
567 |
Metalloid mobility at historic mine and industrial processing sites in the South Island of New ZealandHaffert, Laura, n/a January 2009 (has links)
Rocks of the South Island of New Zealand are locally enriched in metalloids, namely arsenic (As), antimony (Sb) and boron (B). Elevated levels of As and Sb can be found in sulphide minerals mostly in association with mesothermal gold deposits, whereas B enrichment occurs in marine influenced coal deposits. The mobility of these metalloids is important because they can be toxic at relatively low levels (e.g. for humans >0.01 mg/L of As). Their mobilisation occurs naturally from background weathering of the bedrock. However, mining and processing of coal and gold deposits, New Zealand's most economically important commodities, can significantly increase metalloid mobility. In particular, historic mines and associated industrial sites are known to generate elevated metalloid levels because of the lack of site remediation upon closure. This work defines and quantifies geological, mining, post-mining and regional processes with respect to metalloid, especially As, mobility.
At the studied historic gold mines, the Blackwater and Bullendale mines, Sb levels in mineralised rocks were generally negligible (<14 ppm) compared to As (up to 10,000 ppm). Thus, Sb concentrations in solids and in water were too low to yield any meaningful information on Sb mobility. In contrast, dissolved As concentrations downstream from mine sites were found to be very high (up to 59 mg/L) (background = 10⁻� mg/L). In addition, very high As concentrations were found in residues (up to 40 wt%) and site substrate (up to 30 wt%) at the Blackwater processing sites (background < 0.05 wt%). Here, roasting of the gold ore converted the orginal As mineral, arsenopyrite, into the mineral arsenolite (As[III] trioxide polymorph) and volatilised the sulphur. The resultant sulphur-defficient chemical system is driven by arsenolite dissolution and differs significantly from mine sites where arsenopyrite is the main As source.
Arsenolite is significantly more soluble than arsenopyrite. In the surficial environment, arsenolite dissolution is limited by kinetics only, which are slow enough to preserve exposed arsenolite over decades in a temperate, wet climate. This process results in surface waters with up to ca. 50 mg/L dissolved As. In reducing conditions, dissolved As concentrations are also controlled by the solubility of arsenolite producing As concentrations up to 330 mg/L.
Field based cathodic stripping voltammetry showed that the As[III]/As[V] redox couple, in particular the oxidation of As[III], has a major control on system pH and Eh. Site acidification is mainly caused by the oxidation of As[III], resulting in a close link between As[V] concentrations and pH. Similarly, a strong correlation between calculated (Nernstian) and measured (electrode) Eh was found in the surface environment, suggesting that the overall Eh of the system is, indeed, defined by the As[III]/As[V] redox couple.
Once the metalloid is mobilised from its original source, its mobility is controlled by at least one of the following attenuation processes: (a) precipitation of secondary metalloid minerals, (b) co-precipitation with - or adsorption to - iron oxyhydroxide (HFO), or (c) dilution with background waters. The precipitation of secondary minerals is most favoured in the case of As due to the relatively low solubility of iron arsenates, especially at low pH (~0.1 mg/L). Observations suggest that scorodite can be the precursor phase to more stable iron arsenates, such as kankite, zykaite, bukovskyite or pharmacosiderite and their stability is mainly controlled by pH, sulphur concentrations and moisture prevalence. Empirical evidence indicates that the sulphur-containing minerals zykaite and bukovskyite have a similar pH dependence to scorodite with solubilities slightly lower than scorodite and kankite. If dissolved As concentrations decline, iron arsenates potentially become unstable. Their dissolution maintains a pH between 2.5 and 3.5. This acidification process is pivotal with respect to As mobility, especially in the absence of other acidification processes, because iron arsenates are several orders of magnitude more soluble in circum-neutral pH regimes (~100 mg/L). From this, it becomes apparent that external pH modifications, for example as part of a remediation scheme, can significantly increase iron arsenate solubility and resultant As mobility. In contrast to As, the precipitation of secondary Sb and B minerals is limited by their high solubilities, which are several orders of magnitude higher than for iron arsenates. Thus, secondary Sb and B minerals are restricted to evaporative waters, from which they can easily re-mobilised during rain events.
Metalloid adsorption to HFO is mainly controlled or limited by the extent of HFO formation, which in turn is governed by the availability of Fe and prevailing Eh-pH conditions. Thus, mineralisation styles and associated geochemical gradients, in particular pyrite abundance, can control the amount of HFO and consequent metalloid attenuation, and these can vary even within the same goldfleld. Furthermore, it was found that there is a mineralogical gradation between ferrihydrite with varying amounts of adsorbed As, amorphous iron arsenates and crystalline iron arsenates, suggesting that the maturity of mine waste is an important factor in As mineralogy.
Once dissolved metalloids enter the hydrosphere, dilution is the main control on metalloid attenuation, which is especially pronounced at the inflow of tributaries. Dilution is, therefore, closely related to the size and frequency of these tributaries, which in turn are controlled by the regional topography and climate. Dilution is a considerably less effective attenuation mechanism and anomalous metalloid concentrations from mining related sites can persist for over 10 km downstream.
The complex and often inter-dependent controls on metalloid mobility mean that management decisions should carefully consider the specific site geochemistry to minimize economic, health and environmental risks that can not be afforded.
On a regional scale, background metalloid flux determines the downstream impact of an anomalous metalloid source upstream. For example, the Bullendale mine is located in a mountainous region, where rapidly eroding slopes expose fresh rock and limit the extent of soil cover and chemical weathering. Consequently, the background As flux is relatively low and As point sources, such as the Bullendale mine, present a significant contribution to the downstream As flux. In contrast, the bedrock at the Blackwater mine has undergone deep chemical weathering, resulting in an increased background mobilisation of As. Thus, the Prohibition mill site discharge, for example, contributes only about 10% to the downstream As flux. This information is relevant to site management decisions because the amount of natural background metalloid mobilisation determines whether site remediation will influence downstream metalloid chemistry on a regional scale.
|
568 |
Metalloid mobility at historic mine and industrial processing sites in the South Island of New ZealandHaffert, Laura, n/a January 2009 (has links)
Rocks of the South Island of New Zealand are locally enriched in metalloids, namely arsenic (As), antimony (Sb) and boron (B). Elevated levels of As and Sb can be found in sulphide minerals mostly in association with mesothermal gold deposits, whereas B enrichment occurs in marine influenced coal deposits. The mobility of these metalloids is important because they can be toxic at relatively low levels (e.g. for humans >0.01 mg/L of As). Their mobilisation occurs naturally from background weathering of the bedrock. However, mining and processing of coal and gold deposits, New Zealand's most economically important commodities, can significantly increase metalloid mobility. In particular, historic mines and associated industrial sites are known to generate elevated metalloid levels because of the lack of site remediation upon closure. This work defines and quantifies geological, mining, post-mining and regional processes with respect to metalloid, especially As, mobility.
At the studied historic gold mines, the Blackwater and Bullendale mines, Sb levels in mineralised rocks were generally negligible (<14 ppm) compared to As (up to 10,000 ppm). Thus, Sb concentrations in solids and in water were too low to yield any meaningful information on Sb mobility. In contrast, dissolved As concentrations downstream from mine sites were found to be very high (up to 59 mg/L) (background = 10⁻� mg/L). In addition, very high As concentrations were found in residues (up to 40 wt%) and site substrate (up to 30 wt%) at the Blackwater processing sites (background < 0.05 wt%). Here, roasting of the gold ore converted the orginal As mineral, arsenopyrite, into the mineral arsenolite (As[III] trioxide polymorph) and volatilised the sulphur. The resultant sulphur-defficient chemical system is driven by arsenolite dissolution and differs significantly from mine sites where arsenopyrite is the main As source.
Arsenolite is significantly more soluble than arsenopyrite. In the surficial environment, arsenolite dissolution is limited by kinetics only, which are slow enough to preserve exposed arsenolite over decades in a temperate, wet climate. This process results in surface waters with up to ca. 50 mg/L dissolved As. In reducing conditions, dissolved As concentrations are also controlled by the solubility of arsenolite producing As concentrations up to 330 mg/L.
Field based cathodic stripping voltammetry showed that the As[III]/As[V] redox couple, in particular the oxidation of As[III], has a major control on system pH and Eh. Site acidification is mainly caused by the oxidation of As[III], resulting in a close link between As[V] concentrations and pH. Similarly, a strong correlation between calculated (Nernstian) and measured (electrode) Eh was found in the surface environment, suggesting that the overall Eh of the system is, indeed, defined by the As[III]/As[V] redox couple.
Once the metalloid is mobilised from its original source, its mobility is controlled by at least one of the following attenuation processes: (a) precipitation of secondary metalloid minerals, (b) co-precipitation with - or adsorption to - iron oxyhydroxide (HFO), or (c) dilution with background waters. The precipitation of secondary minerals is most favoured in the case of As due to the relatively low solubility of iron arsenates, especially at low pH (~0.1 mg/L). Observations suggest that scorodite can be the precursor phase to more stable iron arsenates, such as kankite, zykaite, bukovskyite or pharmacosiderite and their stability is mainly controlled by pH, sulphur concentrations and moisture prevalence. Empirical evidence indicates that the sulphur-containing minerals zykaite and bukovskyite have a similar pH dependence to scorodite with solubilities slightly lower than scorodite and kankite. If dissolved As concentrations decline, iron arsenates potentially become unstable. Their dissolution maintains a pH between 2.5 and 3.5. This acidification process is pivotal with respect to As mobility, especially in the absence of other acidification processes, because iron arsenates are several orders of magnitude more soluble in circum-neutral pH regimes (~100 mg/L). From this, it becomes apparent that external pH modifications, for example as part of a remediation scheme, can significantly increase iron arsenate solubility and resultant As mobility. In contrast to As, the precipitation of secondary Sb and B minerals is limited by their high solubilities, which are several orders of magnitude higher than for iron arsenates. Thus, secondary Sb and B minerals are restricted to evaporative waters, from which they can easily re-mobilised during rain events.
Metalloid adsorption to HFO is mainly controlled or limited by the extent of HFO formation, which in turn is governed by the availability of Fe and prevailing Eh-pH conditions. Thus, mineralisation styles and associated geochemical gradients, in particular pyrite abundance, can control the amount of HFO and consequent metalloid attenuation, and these can vary even within the same goldfleld. Furthermore, it was found that there is a mineralogical gradation between ferrihydrite with varying amounts of adsorbed As, amorphous iron arsenates and crystalline iron arsenates, suggesting that the maturity of mine waste is an important factor in As mineralogy.
Once dissolved metalloids enter the hydrosphere, dilution is the main control on metalloid attenuation, which is especially pronounced at the inflow of tributaries. Dilution is, therefore, closely related to the size and frequency of these tributaries, which in turn are controlled by the regional topography and climate. Dilution is a considerably less effective attenuation mechanism and anomalous metalloid concentrations from mining related sites can persist for over 10 km downstream.
The complex and often inter-dependent controls on metalloid mobility mean that management decisions should carefully consider the specific site geochemistry to minimize economic, health and environmental risks that can not be afforded.
On a regional scale, background metalloid flux determines the downstream impact of an anomalous metalloid source upstream. For example, the Bullendale mine is located in a mountainous region, where rapidly eroding slopes expose fresh rock and limit the extent of soil cover and chemical weathering. Consequently, the background As flux is relatively low and As point sources, such as the Bullendale mine, present a significant contribution to the downstream As flux. In contrast, the bedrock at the Blackwater mine has undergone deep chemical weathering, resulting in an increased background mobilisation of As. Thus, the Prohibition mill site discharge, for example, contributes only about 10% to the downstream As flux. This information is relevant to site management decisions because the amount of natural background metalloid mobilisation determines whether site remediation will influence downstream metalloid chemistry on a regional scale.
|
569 |
Genetic studies on the tolerance of wheat to high concentrations of boron / by Yodsaporn Chantachume.Yodsaporn Chantachume January 1995 (has links)
Bibliography: leaves 213-245. / iv, 246, [59] leaves of plates : ill. (chiefly col.) ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Genetic control of tolerance to boron was investigated between a moderately tolerant variety, Halberd, a tolerant line G61450 and the moderately sensitive varieties Schomburgk and Condor. / Thesis (Ph.D.)--University of Adelaide, Dept. of Plant Science, 1996
|
570 |
Effect of nutrition on postharvest quality and grey mould development in strawberries.Naradisorn, Matchima January 2008 (has links)
Strawberries are an extremely perishable fruit mainly due to their soft texture and sensitivity to fungal infection. The fungal pathogen Botrytis cinerea is responsible for grey mould on strawberries and is the main causal agent of postharvest decay and subsequent economic loss. As an alternative to fungicides, manipulation of plant nutrition, such as calcium and boron, has been suggested as a means of disease management. This project investigated the effects of calcium and boron application on fruit quality and grey mould development in strawberry. The effect of calcium on fruit quality, grey mould development and leaf blight in strawberry cultivars ‘Aromas’ and ‘Selva’ was investigated through preharvest and postharvest applications. To determine the effect of preharvest application, calcium sulphate in 0.25X strength Hoagland’s solution was applied at 0, 100, 300 and 500 ppm Ca through fertigation. Fully-ripened fruit were harvested and evaluated for postharvest quality at harvest and then after storage at 10⁰C, 90±5% RH for 2 to 10 days. Although fruit firmness of both cultivars declined slightly during storage, this was not affected by preharvest calcium application. Similarly, preharvest calcium treatment had no effect on the external appearance, pH, soluble solids content (SSC) or titratable acidity (TA). No grey mould development was observed on fruit at harvest when flowers were inoculated with a conidia suspension of B. cinerea (10⁴ conidia per mL). However, fruit harvested from plants that received calcium at any concentration had less incidence of grey mould during storage at 10⁰C, 90±5% RH for 14 days than fruit harvested from plants that received no calcium for both cultivars. For ‘Aromas’, 79% and 51% of fruit, and for ‘Selva’, 69% and 43% of fruit, showed rot when treated with 0 and 500 ppm Ca, respectively. The shelf life of ‘Aromas’ and ‘Selva’ increased by about 8% when plants received 500 ppm Ca in comparison with plants that received 0 ppm Ca. After 7 days of incubation at 22 to 24⁰C, there was no difference between blight lesions on wound-inoculated detached leaves from different calcium treatments for either cultivar. However, the lesions on ‘Selva’ were smaller than on ‘Aromas’. The calcium levels in leaves from plants that received calcium at any concentration were adequate for strawberry growing and significantly higher (P < 0.05) than in leaves from plants that received 0 ppm Ca. However, calcium treatment did not ensure transfer of calcium to fruit tissues. Calcium lactate and calcium chloride were used as postharvest calcium treatments at 1500, 3000 and 4500 ppm Ca. Fruit of ‘Selva’ were dipped in calcium solution for 5 min and wound-inoculated with B. cinerea (10⁶ conidia per mL). Calcium lactate and calcium chloride at 3000 and 4500 ppm Ca, respectively, were most effective in delaying Botrytis rot development on ‘Selva’ after 7 days of storage at 10⁰C, 90±5% RH. Storage for least 24 h after calcium dips prior to inoculation was required to delay the development of fruit rot. Fruit harvested early in the season seemed to be less susceptible to grey mould than those harvested later. However, calcium treatment tended to be more effective when applied to late-season fruit. Preharvest boron treatment, applied as for calcium but at 0, 0.25, 0.5 and 1.0 ppm B, had no effect on fruit firmness of either cultivar. However, firmness of ‘Aromas’ fruit was slightly greater than ‘Selva’ fruit for all treatments. The amount of boron applied had no effect on the external appearance, pH, SSC or TA for either cultivar after storage of fruit for up to 10 days. Application of boron had no effect on fruit grey mould development in either cultivar. Furthermore, boron had minimal effect on the incidence of blight on woundinoculated detached leaves of ‘Aromas’ 7 days after inoculation. However, blight lesion diameters on ‘Selva’ leaves in the 1.0 ppm B treatment (8.0 mm) were significantly smaller (P < 0.001) than in the 0 ppm B treatment (13.0 mm). Phytotoxicity was observed in boron treatments even at the level considered optimum for strawberry growing. Severity increased with increasing boron concentration but no consistent effect on flower death or flower abortion was observed. In conclusion, strawberry is sensitive to boron toxicity. Calcium may enhance fruit firmness and, consequently, delay grey mould development if calcium penetrates the fruit. Postharvest calcium treatment tended to be more effective in delaying development of grey mould when applied to late-season fruit. Calcium lactate is a potential alternative to calcium chloride for reducing decay caused by B. cinerea in strawberry without providing undesirable bitterness. This finding may provide a basis for application in industry. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1331382 / Thesis (Ph.D.) -- University of Adelaide, School of Agriculture, Food and Wine 2008
|
Page generated in 0.0333 seconds