Spelling suggestions: "subject:"dose"" "subject:"pose""
381 |
Electromagnetically Induced Exciton Dynamics and Bose-Einstein Condensation near a Photonic Band GapYang, Shengjun 26 March 2012 (has links)
We demonstrate electromagnetically-induced anomalous quantum dynamics of an exciton in a photonic band gap (PBG) - quantum well
(QW) hetero-structure. Within the engineered electromagnetic vacuum of the PBG material, the exciton can propagate through the QW by the emission and re-absorption of virtual photons in addition to the conventional electronic hopping mechanism. When the exciton wavevector and recombination energy coincide nearly with a photonic band edge, the exciton kinetic energy is lowered by 1-10meV through coherent radiative hopping. This capture of the exciton by the photonic band edge is accompanied by strong electromagnetic dressing in which the exciton's renormalized effective mass is 4-5 orders of magnitude smaller than in the absence of the PBG environment. This
dressed exciton exhibits a long radiative lifetime characteristic of a photon-atom bound state and is robust to phonon-assisted,
re-combinative decay. By inheriting properties of the PBG electromagnetic vacuum, the bound electron-hole pair becomes a stable, ultra-mobile quantum excitation.
Unlike traditional exciton-polariton modes created by placing a QW in a one-dimensional optical cavity, our PBG-QW excitons exhibit
strong coupling to optical modes and retain a long lifetime. This is crucial for unambiguous observation of quantum coherence effects such as Bose-Einstein condensation.
We present a model for the equilibrium quantum statistics of a condensate of repulsively interacting bosons in a two-dimensional trap. Particle correlations in the ground state are treated exactly,
whereas interactions with excited particles are treated in a generalized Bogoliubov mean-field theory. This leads to a fundamental physical picture for condensation of interacting bosons through an anharmonic oscillator ground state coupled to excited
Bogoliubov quasiparticles in which the quantum number statistics of condensate particles emerges self-consistently. Our anharmonic oscillator model for the exciton ground state manifold goes beyond the conceptual framework of traditional Bogoliubov theory. Below the Bose-Einstein condensation temperature, our model exhibits a crossover from particle bunching to Poissonian statistics and finally antibunching as temperature is lowered or as the trapping area is decreased. When applied to Bose condensation of long-lived dressed excitons in a photonic band gap material, our model suggests that this system may serve as a novel tunable source for
non-classical states of light.
|
382 |
Exploring Many-body Physics with Ultracold AtomsLeBlanc, Lindsay Jane 31 August 2011 (has links)
The emergence of many-body physical phenomena from the quantum mechanical properties of atoms can be studied using ultracold alkali gases. The ability to manipulate both Bose-Einstein condensates (BECs) and degenerate Fermi gases (DFGs) with designer potential energy landscapes, variable interaction strengths and out-of-equilibrium initial conditions provides the opportunity to investigate collective behaviour under diverse conditions.
With an appropriately chosen wavelength, optical standing waves provide a lattice potential for one target species while ignoring another spectator species. A “tune-in” scheme provides an especially strong potential for the target and works best for Li-Na, Li-K, and K-Na mixtures, while a “tune-out” scheme zeros the potential for the spectator, and is pre- ferred for Li-Cs, K-Rb, Rb-Cs, K-Cs, and 39K-40K mixtures. Species-selective lattices provide unique environments for studying many-body behaviour by allowing for a phonon-like background, providing for effective mass tuning, and presenting opportunities for increasing the phase-space density of one species.
Ferromagnetism is manifest in a two-component DFG when the energetically preferred many-body configuration segregates components. Within the local density approximation (LDA), the characteristic energies and the three-body loss rate of the system all give an observable signature of the crossover to this ferromagnetic state in a trapped DFG when interactions are increased beyond kF a(0) = 1.84. Numerical simulations of an extension to the LDA that account for magnetization gradients show that a hedgehog spin texture emerges as the lowest energy configuration in the ferromagnetic regime. Explorations of strong interactions in 40K constitute the first steps towards the realization of ferromagnetism in a trapped 40K gas.
The many-body dynamics of a 87Rb BEC in a double well potential are driven by spatial phase gradients and depend on the character of the junction. The amplitude and frequency characteristics of the transport across a tunable barrier show a crossover between two paradigms of superfluidity: Josephson plasma oscillations emerge for high barriers, where transport is via tunnelling, while hydrodynamic behaviour dominates for lower barriers. The phase dependence of the many-body dynamics is also evident in the observation of macroscopic quantum self trapping. Gross-Pitaevskii calculations facilitate the interpretation of system dynamics, but do not describe the observed damping.
|
383 |
Dynamics of a spin-1 BEC in the regime of a quantum inverted pendulumGerving, Corey Scott 03 April 2013 (has links)
The primary study of this thesis is the experimental realization of the non-equilibrium dynamics of a quantum inverted pendulum as examined in the collective spin dynamics of a spin-1 Bose-Einstein condensate. In order to compare experimental results with the simulation past the low depletion limit, current simulation techniques needed to be extended to model atomic loss. These extensions show that traditional measurements of the system evolution (e.g. measuring the mean and standard deviation of the evolving quantity) were insufficient in capturing the quantum nature of the evolution. It became necessary to look at higher order moments and cumulants of the distributions in order to capture the quantum fluctuations. Extending the implications of the loss model further, it is possible that the system evolves in a way previously unpredicted. Spin-mixing from a hyperbolic fixed point in the phase space and low noise atom counting form the core of the experiment to measure the evolution of the distributions of the spin populations. The evolution of the system is also compared to its classical analogue, the momentum-shortened inverted pendulum.
The other experimental study in this thesis is mapping the mean-field phase space. The mean-field phase space consists of different energy contours that are divided into both phase-winding trajectories and closed orbits. These two regions are divided by a separatrix whose orbit has infinite period. Coherent states can be created fairly accurately within the phase space and allowed to evolve freely. The nature of their subsequent evolution provides the shape of the phase space orbit at that initial condition. From this analysis a prediction of the nature of the entire phase space is possible.
|
384 |
Ultracold dipolar gases in optical latticesTrefzger, Christian 19 April 2010 (has links)
Esta tesis es un trabajo teórico, en el que estudiamos la física de los átomos dipolares bosónicos ultrafríos en retículos ópticos. Éstos gases consisten de átomos o moléculas bosónicas, enfriados bajo la temperatura de degeneración cuántica, típicamente del orden de nK. En éstas condiciones, en una trampa armónica tridimensional (3D), los bosones que interaccionan débilmente condensan y forman un Condensado de Bose Einstein (BEC). Cuando se carga un BEC en un retículo óptico producido por ondas estacionarias de luz láser, se producen nuevos fenómenos físicos. Estos sistemas entonces realizan modelos de tipo Hubbard y pueden ser llevados a regimenes fuertemente correlacionados.En 1989, M. Fisher et. al. predecían que el modelo de Bose-Hubbard homogéneo (BH) presenta la transición de fase cuántica Superfluid-Mott insulator (SF-MI). En 2002, la transición entre éstas dos fases fue observada experimentalmente por primera vez en el grupo de T. Esslinger e I. Bloch. La realización experimental de un BEC dipolar de cromo en el grupo de T. Pfau, y los progresos recientes en las técnicas de enfriamiento y atrapamiento de moléculas dipolares en los grupos de D. Jin e J. Ye, han abierto el camino hacia los gases cuánticos ultra-fríos dominados por la interacción dipolar. La evolución natural, y el reto de hoy en día por parte experimental, es de cargar BEC dipolares en retículos ópticos y estudiar los gases dipolares fuertemente correlacionados.Antes de éste trabajo de doctorado, estudios sobre modelos de BH con interacciones extendidas a los primeros vecinos mostraron la evidencia de nuevas fases cuánticas, como el supersólido (SS) y la fase checkerboard (CB). Debido al carácter de largo alcance de la interacción dipolo-dipolo, que decae con la potencia cúbica inversa de la distancia, es necesario incluir más de un primer vecino para obtener una descripción fiel y cuantitativa de los sistemas dipolares. De hecho, al incluir más vecinos se permiten y se estabilizan aún más nuevas fases.En esta tesis estudiamos modelos de BH con interacciones dipolares, investigando más allá del estado fundamental. Estudiamos un retículo bidimensional (2D) donde los dipolos están polarizados en dirección perpendicular al plano 2D, dando lugar a una interacción dipolar repulsiva e isotrópica. Utilizamos aproximaciones de campo-medio y un ansatz Gutzwiller, que son suficientemente correctos y adecuados para describir este sistema. Encontramos que los gases dipolares en 2D presentan una multitud de estados metaestables de tipo MI, que compiten con el estado fundamental, de modo parecido a sistemas desordenados. Estudiamos en detalle el destino de estos estados metaestables: como pueden ser preparados de manera controlada, como pueden ser detectados, cual es su tiempo de vida debido al tunnelling, y cual es su rol en los procesos de enfriamiento. Además, encontramos que el estado fundamental está caracterizado por estados MI de tipo checkerboard con coeficiente de ocupación n fraccionario (numero medio de partículas por sitio) que depende del cut-off utilizado en el radio de alcance de la interacción. Confirmamos esta predicción estudiando el mismo sistema con métodos Quantum Monte Carlo (worm algorithm). En este caso no utilizamos ningún cut-off en el radio de alcance de la interacción, y encontramos pruebas de una "Devil's staircase" en el estado fundamental, i.e. donde las fases MI aparecen en todos los n racionales del retículo subyacente. Encontramos además, regiones de los parámetros donde el estado fundamental es supersólido, obtenido drogando los sólidos con partículas o con agujeros.En este trabajo, investigamos también como cambia la estructura precedente en 3D. Nos focalizamos en el retículo 3D más sencillo compuesto de dos planos 2D, en el cual los dipolos están polarizados perpendicularmente a los planos; la interacción dipolar es entonces repulsiva por partículas del mismo plano, mientras es atractiva por partículas en el mismo sitio de dos planos diferentes. En cambio suprimimos el tunnelling entre los planos, lo cual hace el sistema equivalente a una mezcla bosónica en un retículo 2D. Nuestros cálculos muestran que las partículas se juntan en parejas, y demostramos la existencia de la nueva fase cuántica Pair Super Solid (PSS).Actualmente estamos estudiando un retículo 2D donde los dipolos están libres de apuntar en ambas direcciones perpendicularmente al plano, lo cual resulta en una interacción a primeros vecinos repulsiva (atractiva) por dipolos alineados (anti-alineados). Encontramos regiones de parámetros donde el estado fundamental es ferromagnético u anti-ferromagnético, y encontramos pruebas de la existencia de la fase cuántica Counterflow Super Solid (CSS).Las nuestras predicciones tienen directas consecuencias experimentales, y esperamos que vengan pronto controladas en experimentos con gases dipolares atómicos y moleculares ultra-fríos. / This thesis is a theoretical work, in which we study the physics of ultra-cold dipolar bosonic gases in optical lattices. Such gases consist of bosonic atoms or molecules, cooled below the quantum degeneracy temperature, typically in the nK range. In such conditions, in a three-dimensional (3D) harmonic trap, weakly interacting bosons condense and form a Bose-Einstein Condensate (BEC). When a BEC is loaded into an optical lattice produced by standing waves of laser light, new kinds of physical phenomena occur.These systems realize then Hubbard-type models and can be brought to a strongly correlated regime. In 1989, M. Fisher et. al. predicted that the homogeneous Bose-Hubbard model (BH) exhibits the Superfluid-Mott insulator (SF-MI) quantum phase transition. In 2002 the transition between these two phases were observed experimentally for the first time in the group of T. Esslinger and I. Bloch. The experimental realisation of a dipolar BEC of Chromium by the group of T. Pfau, and the recent progresses in trapping and cooling of dipolar molecules by the groups of D. Jin and J. Ye, have opened the path towards ultra-cold quantum gases with dominant dipole interactions. A natural evolution and present challenge, on the experimental side is then to load dipolar BECs into optical lattices and study strongly correlated ultracold dipolar lattice gases.Before this PhD work, studies of BH models with interactions extended to nearest neighbours had pointed out that novel quantum phases, like supersolid (SS) and checkerboard phases (CB) are expected. Due to the long-range character of the dipole-dipole interaction, which decays as the inverse cubic power of the distance, it is necessary to include more than one nearest neighbour to have a faithful quantitative description of dipolar systems. In fact, longer-range interactions tend to allow for and stabilize more novel phases.In this thesis we study BH models with dipolar interactions, going beyond the ground state search. We consider a two-dimensional (2D) lattice where the dipoles are polarized perpendicularly to the 2D plane, resulting in an isotropic repulsive interaction. We use the mean-field approximations and a Gutzwiller ansatz which are quite accurate and suitable to describe this system. We find that dipolar bosonic gas in 2D exhibits a multitude of insulating metastable states, often competing with the ground state, similarly as in a disordered system. We study in detail the fate of these metastable states: how can they be prepared on demand, how they can be detected, what is their lifetime due to tunnelling, and what is their role in various cooling schemes. Moreover, we find that the ground state is characterized by insulating checkerboard-like states with fractional filling factors v(average number of particles per site) that depend on the cut-off used for the interaction range. We confirm this prediction by studying the same system with Quantum Monte Carlo methods (the worm algorithm). In this case no cut-off is used, and we find evidence for a Devil's staircase in the ground state, i.e. where insulating phases appear at all rational of the underlying lattice. We also find regions of parameters where the ground state is a supersolid, obtained by doping the solids either with particles or vacancies.In this work, we also investigate how the previous scenario changes in 3D. We focus on the simplest 3D lattice composed of two 2D layers in which the dipoles are polarized perpendicularly to the planes; the dipolar interaction is then repulsive for particles laying on the same plane, while it is attractive for particles at the same lattice site on different layers. Instead we consider inter-layer tunnelling to be suppressed, which makes the system analogous to a bosonic mixture in a 2D lattice. Our calculations show that particles pair into composites, and demonstrate the existence of the novel Pair Super Solid (PSS) quantum phase.Currently we are studying a 2D lattice where the dipoles are free to point in both directions perpendicularly to the plane, which results in a nearest neighbour repulsive (attractive) interaction for aligned (antialigned) dipoles. We find regions of parameters where the ground state is ferromagnetic or antiferromagnetic, and find evidences for the existence of a Counterflow Super Solid (CSS) quantum phase.Our predictions have direct experimental consequences, and we hope that they will be soon checked in experiments with ultracold dipolar atomic and molecular gases.
|
385 |
Spin-1 atomic condensates in magnetic fieldsZhang, Wenxian 22 September 2005 (has links)
In this thesis we investigate the static, dynamic, and thermodynamic properties
of atomic spin-1 Bose gases in external magnetic fields. At low magnetic fields
the properties of single-component, or scalar condensates, are essentially
unaffected but can become significantly altered for spinor Bose condensates as
shown by our studies.
We first study the Bose-Einstein condensation of trapped spin-1 Bose gases by
employing the Hartree-Fock approximation and the two-fluid model within a mean
field approximation. Our detailed investigation reveals that the
ferromagnetically interacting spin-1 condensates exhibit triple condensations
while the antiferromagnetically interacting ones show double condensations.
The ground state structure of homogeneous and trapped spin-1 Bose condensates
with ferromagnetic and antiferromagnetic interactions at zero temperature in
magnetic fields are then investigated systematically. We further illuminate the
important effect of quadratic Zeeman shift which causes a preferred occupation
of the $|m_F=0
angle$ state through spin exchange collisions, $2|m_F=0
angle
leftrightarrow |m_F=1
angle + |m_F=-1
angle$.
We also present detailed studies of the off-equilibrium coherent dynamics of
spin-1 Bose condensates in magnetic fields within the single spatial mode
approximation. Dynamical instabilities of the off-equilibrium oscillations are
shown to be responsible for the formation of multiple domains as recently
observed in several $^{87}$Rb experiments.
Finally, we discuss briefly excited condensate states, or soliton-like states,
in cigar-shaped spin-1 Bose condensates with an effective quasi-1D description,
using the developed nonpolynomial Schr"odinger equation.
|
386 |
Modern problems in Statistical Physics of Bose-Einstein Condensation and in Electrodynamics of Free Electron LasersDorfman, Konstantin E. 2009 May 1900 (has links)
In this dissertation, I have studied theoretical problems in statistical physics and
electrodynamics of Bose particles, namely, mesoscopic effects in statistics of Bose-
Einstein condensate (BEC) of atoms and electromagnetic waveguide effects of planar
Bragg structures in Free Electron Lasers.
A mesoscopic system of a trapped gas of Bose atoms is the most difficult for
the theoretical analysis in quantum statistical physics since it cannot be studied by
neither a quantum mechanics of the simple microscopic systems of one or very few
atoms nor a standard statistical physics of the macroscopic systems that implies a
thermodynamic limit.
I present analytical formulas and numerical calculations for the moments and
cumulants of BEC fluctuations in both ideal and weakly interacting gas.
I analyze the universal scaling and structure of the BEC statistics in a mesoscopic
ideal gas in the critical region. I present an exactly solvable Gaussian model of BEC
in a degenerate interacting gas and its solution that confirms the universality and
constraint-cut-off origin of the strongly non-Gaussian BEC statistics.
I consider a two-energy-level trap with arbitrary degeneracy of an upper level
and find an analytical solution for the condensate statistics in a mesoscopic ideal gas.
I show how to model BEC in real traps by BEC in the two-level or three-level traps.
I study wave propagation in the open oversized planar Bragg waveguides, in particular, in a planar metal waveguide with corrugation. I show that a step perturbation
in a corrugation phase provides a high selectivity over transverse modes.
I present a new Free Electron Laser (FEL) amplifier scheme, in which the radiation
is guided by the planar Bragg structure with slightly corrugated walls and
a sheet electron beam is traveling at a significant angle to the waveguide axis. By
means of nonlinear analysis, I demonstrate that the proposed scheme provides an
effective mode filtration and control over the structure of the output radiation and
allows one to achieve amplification up to 30 dB in the existing FEL machines.
|
387 |
Rapidly Rotating Ultracold Atoms In Harmonic TrapsGhazanfari, Nader 01 June 2011 (has links) (PDF)
In this study we investigate the properties of trapped atoms
subjected to rapid rotations. The study is divided into two distinct
parts, one for fermions, another for bosons. In the case of the
degenerate Fermi gas we explore the density structure of
non-interacting cold atoms when they are rotated rapidly. On the
other hand, for rapidly rotating two component Bose condensate, we
search for new lattice structures in the presence of contact and
dipolar interactions.
First, the density structure of Fermi gases in a rotating trap is
investigated. We focus on the anisotropic trap case, in which two
distinct regimes, two and one dimensional regimes, depending on
rotation frequency and anisotropy are observed. Two regimes can be
illustrated by a simple description of maximum number of states
between two Landau levels, which is strongly related to the
dimensionality of the system. The regimes are separated from each
other by a minimum point in this description. For small anisotropy
values the density profiles show a step structure where each step is
demonstrated by an elliptical plateau. Each plateau represents a
Landau level with a constant density. The local density
approximation describes the two dimensional regime with a perfect
similarity in the structure of fermion density. The case for one
dimensional regime is a little different from the two dimensional
case. For large anisotropy values the Friedel oscillation is the
dominant aspect of the density profiles. The density profiles show
gaussian structure along the direction of strong trapping, and a
semicircular form with prominent oscillations along the weak
confining direction. Again, the system is nicely described by local
density approximation in this regime. A smooth crossover between two
regimes is observed, with a switching from a step structure profile
to a soft edge transition with Friedel oscillations. At finite
temperatures, the step structures are smeared out in two dimension.
In one dimensional regime the Friedel oscillations are cleaned as
soon as the temperature is turned on.
The second part of the study is devoted to the investigation of
different lattice structures in two component Bose condensates
subjected to very fast rotation, this time in the presence of
interactions. We explore the existence of new vortex lattice
structures for dipolar two component condensates scanning a wide
range of interaction strengths. We introduce a phase diagram as a
function of intra and inter-component interactions showing different
type of vortex lattice structures. New types of lattice structures,
overlapped square and overlapped rectangular, emerge as a
result of dipolar interactions and s-wave interaction for a two
component condensate. The region where the attractive
inter-component interactions dominate the repulsive interactions, the
overlapped lattices are formed. The intra-component interactions,
which defines the behavior of each component inside, result in
different type of lattices by changing the strength of interactions.
Two different limits of phase diagram reproduce the results of
ordinary two component and dipolar one component Bose condensates.
The results of calculation are in agreement with the results of
previous studies for two regimes.
|
388 |
I) De l'optique quantique aux condensats de Bose-Einstein <br /><br />II) Contribution à l'étude du pompage optique de l'hélium 3 pour des applications médicalesSinatra, Alice 17 May 2006 (has links) (PDF)
I) Dans notre travail sur les condensats, souvent motivé par des expériences, nous nous sommes intéressés à deux aspects. Le premier lié à la cohérence de phase du condensat et le deuxième lié au caractère multimode du champ atomique lorsque la température du système est non nulle. Nous avons étudié l'effet des pertes de particules sur le brouillage et les résurgences de phase par la méthode des fonctions d'onde Monte-Carlo. Nous avons étudié la dynamique spatiale et de phase dans un mélange de deux condensats par des méthodes analytiques et numériques à l'aide de l'équation de Gross-Pitaevskii. Nous avons proposé et mis en oeuvre une méthode stochastique pour échantillonner la distribution de Wigner d'équilibre d'un champ atomique à une température non nulle dans le cadre de l'approximation de Bogoliubov; ceci peut servir de point de départ pour une évolution dynamique de type champ classique qui, elle, va au-delà de l'approche de Bogoliubov. Par des simulations 3D de champ classique, nous avons ainsi montré la formation d'un réseau de vortex dans un condensat tournant, sans l'introduction de termes d'amortissement dans l'équation de Schrodinger non linéaire.<br /><br /><br />II) Selon la méthode actuellement utilisée, l'hélium 3 est pompé par échange de métastabilité à faible pression (< 1mbar) ce qui nécessite un phase<br />délicate de compression sans perte de polarisation avant que le gaz puisse être utilisé pour l'imagerie.<br />Par une étude expérimentale et théorique systématique, nous avons montré qu'effectuer le pompage en présence d'un champ magnétique fort, de 1.5 Tesla, permet de supprimer des canaux de relaxation de la polarisation nucléaire et d'étendre ainsi le domaine d'applicabilité du pompage de l'hélium par échange de métastabilité à des pressions presque 100 fois plus élevées que celles usuelles, ce qui devrait simplifier considérablement l'étape de compression du gaz.
|
389 |
Dynamique quantique dans les potentiels lumineuxThommen, Quentin Zehnlé-Dhaoui, Véronique. Garreau, Jean-Claude. January 2007 (has links)
Reproduction de : Thèse de doctorat : Lasers, Molécules, Rayonnement atmosphérique : Lille 1 : 2004. / N° d'ordre (Lille 1) : 3554. Titre provenant de la page de titre du document numérisé. Bibliogr. p. 185-187.
|
390 |
Photoassociation experiments on ultracold and quantum gases in optical latticesRyu, Changhyun 28 August 2008 (has links)
Not available / text
|
Page generated in 0.0452 seconds