• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 218
  • 81
  • 17
  • 15
  • 9
  • 6
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 392
  • 222
  • 191
  • 145
  • 133
  • 89
  • 81
  • 80
  • 78
  • 69
  • 67
  • 62
  • 62
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Precision calculations in effective theories for Higgs production / Calculs de précision dans des théories effectives pour la physique du boson de Higgs

Deutschmann, Nicolas 08 September 2017 (has links)
Après une introduction générale, ce manuscrit contient deux chapitres préliminaires, l'un décrivant le contexte physique et l'autre les techniques mathématiques utilisées lors de cette thèse.Nous présentons ensuite les travaux développés au cours de cette thèse. Nous commençons par l'extraction de la correction du couplage de Yukawa du quark bottom dans la théorie effective du boson de Higgs par un calcul de correspondance à deux boucles entre cette théorie effective et le modèle standard. Cette correction était la pièce manquante pour l'amélioration de la prédiction de la section efficace de production du boson de Higgs en association avec deux quarks bottom.Les deux chapitres suivants couvrent différents aspects du calcul de la correction au deuxième ordre de la section efficace de production d'un boson de Higgs par fusion de gluon dans la théorie effective du modèle standard. Nous présentons d'abord le calcul des corrections virtuelles de ce processus et exploitons la structure établie des divergences ultraviolettes à une boucle et des divergences infrarouges pour extraire un contre terme à deux boucles qui nous a permis de renormaliser l'amplitude, que nous avons ensuite prolongé analytiquement aux régions physiques.Nous combinons alors ce résultat avec le calcul automatique des corrections par émission réelles par le logiciel Madgraph5_aMC@NLO, qui a permis l'intégration de la section efficace. Nous présentons les résultats pour la section efficace totale et deux distributions de variables cinématiques et commentons l'impact des corrections radiatives sur ces prédictions / After a general introduction, this manuscript presents two preliminary chapters, describing first the physics context and the mathematical techniques used in this thesis.We then present the work performed in this thesis. We start with extraction of the power-suppressed of the Yukawa coupling of the bottom quark in the Higgs Effective Field Theory (HEFT) by a two-loop matching calculation between the Standard Model and the HEFT. This correction was the missing piece to improve the prediction of the production cross section of a Higgs boson in association to a pair of bottom quarks.The two next chapters present different aspects of the NLO corrections to Higgs boson production through gluon fusion in the standard model effective field theory. We first present the evaluation of the virtual corrections to this process and use the known one-loop ultraviolet and infrared divergence structure to extract a two-loop counterterm that allowed us to renormalize the amplitude, which we then analytically continued to the physical regions.We then combine this result with the automatic calculation of the real emission corrections in the program Madgraph5_aMC@NLO. The results are presented for the total cross section and differential distributions and comment on the effect of radiative corrections on these predictions
172

Search for rare processes with a Z+bb signature at the LHC, with the matrix element method / Recherche de processus rares avec la signature Z+bb au LHC, à l'aide de la méthode des éléments de matrice

Beluffi, Camille 14 October 2015 (has links)
Cette thèse présente une étude détaillée de l'état final avec un boson Z se désintégrant en deux leptons, produit dans le détecteur CMS au LHC. Pour identifier cette topologie, des algorithmes sophistiqués d'étiquetage des jets b ont été utilisés, et la calibration de l'un d'entre eux, Jet Probability, est exposée. Une étude de la dégradation de cet algorithme à hautes énergies a été menée et une amélioration des performances a pu être notée. Cette étude est suivie par une recherche du boson de Higgs du modèle standard (MS) se désintégrant en deux quarks b, et produit en association avec un boson Z (canal ZH), à l'aide de la Méthode des Éléments de Matrice (MEM) et deux algorithmes d'étiquetage des jets b: JP et Combined Secondary Vertex (CSV). La MEM est un outil perfectionné qui produit une variable discriminante par événement, appelée poids. Pour l'appliquer, plusieurs lots de fonctions de transfert ont été produits. Le résultat final renvoie une limite observée sur le taux de production de ZH avec le rapport d'embranchement H → bb de 5.46xσMS en utilisant CSV et de 4.89xσMS en faisant usage de JP : un léger excès de données est observé seulement pour CSV. Enfin, à partir de l'analyse précédente, une recherche de nouvelle physique modèle-indépendante a été faite. Le but était de discriminer entre eux les processus du MS afin de catégoriser l'espace de phase Zbb, à l'aide d'une méthode récursive basée sur les poids de la MEM. Des paramètres libres ont été ajustés pour obtenir la meilleure limite d'exclusion pour le signal ZH. En utilisant la meilleure configuration trouvée, la limite calculée est de 3.58xσMS, proche de celle obtenue avec l'analyse précédente. / This thesis presents a detailed study of the final state with the Z boson decaying into two leptons, produced in the CMS detector at the LHC. In order to tag this topology, sophisticated b jet tagging algorithms have been used, and the calibration of one of them, the Jet Probability (JP) tagger is exposed. A study of the tagger degradation at high energy has been done and led to a small gain of performance. This investigation is followed by the search for the associated production of the standard model (SM) Higgs boson with a Z boson and decaying into two b quarks (ZH channel), using the Matrix Element Method (MEM) and two b-taggers: JP and Combined Secondary Vertex (CSV). The MEM is an advanced tool that produces an event-by-event discriminating variable, called weight. To apply it, several sets of transfer function have been produced. The final results give an observed limit on the ZH production cross section with the H → bb branching ratio of 5.46xσSM when using the CSV tagger and 4.89xσSM when using the JP algorithm: a small excess of data is observed only for CSV. Finally, based on the previous analysis, a model-independent search of new physics has been performed. The goal was to discriminate all the SM processes to categorize the Zbb phase space, with a recursive approach using the MEM weights. Free parameters had to be tuned in order to find the best exclusion limit on the ZH signal strength. For the best configuration, the computed limit was 3.58xσSM, close to the one obtained with the dedicated search.
173

Search for the Higgs boson decaying to two photons and produced in association with a pair of top quarks in the CMS experiment / Recherche du boson de Higgs se désintégrant en deux photons et produit en association avec une paire de quarks top dans l'expérience CMS au LHC

Kucher, Inna 17 July 2017 (has links)
Dans cette thèse, la mesure des propriétés du boson de Higgs dans le canal de désintégration en deux photons avec l'expérience CMS au Grand Collisionneur de Hadrons (LHC) est présentée. L'objectif de ce travail est l’étude du mode de production associé à une paire de quark top (tṫH). Ce mode représente le seul accès direct au couplage de Yukawa du quark top, un paramètre fondamental du Modèle Standard. Le mode de production tṫH est un processus très rare. Il est de l'ordre de deux ordres de grandeur plus petits que la production principale du boson de Higgs par fusion de gluons. À 13 TeV, le mode de production ttH est environ 4 fois plus grand qu'à 8 TeV. Cette thèse reprend les études réalisées à 8 TeV, où l’échantillon de données ne suffisait pas pour établir une observation de ce mode de production. Bien que le canal en deux photons ne soit pas celui qui présente le plus grand rapport de branchement (seulement 0,2%), il est très prometteur en raison de son excellente résolution en masse (1%). De plus, sa signature est très propre dans le détecteur. Le canal de désintégration en deux photons est particulièrement intéressant puisqu'il s'agit du seul canal permettant l'étude de tous les modes de production : la fusion de gluons, la fusion de bosons vecteurs, les productions associées avec des bosons W ou Z ou avec une paire de quarks top. Le document commence par une introduction théorique du Modèle Standard et la physique du boson de Higgs au LHC, suivie d'une description du détecteur CMS. Pour obtenir une excellente résolution de masse dans le canal de désintégration en deux photons , le calorimètre électromagnétique doit être calibré. Le système de monitorage de la transparence des cristaux du calorimètre électromagnétique de CMS par le système laser joue un rôle important dans la chaîne d'étalonnage et est décrit en détail. Sur le long terme, le système de monitorage laser devra être amélioré car le niveau de rayonnement influence son électronique. Je présente mon travail sur l'amélioration possible du système de monitorage laser, ainsi que l'étude de sa précision possible. L'analyse inclusive H → ᵞᵞ a eu plusieurs itérations pour les conférences en 2016 et 2017. La stratégie pour 2017 est décrite dans ce document. Une classification des événement sert à maximiser la significance du signal et à étudier les modes spécifiques de production du boson de Higgs. Mes contributions à l'analyse H → ᵞᵞ consistent en l'identification du vertex primaire, l'identification du photon et l'étude du mode de production tṫH. Chaque contribution est décrite en détail dans des chapitres dédiés. L'analyse tṫH, H → ᵞᵞ est présentée pour deux itérations en 2016 et 2017, en mettant l'accent sur les améliorations dans l'analyse de 2017. Enfin, les résultats de l'analyse inclusive et tṫH, H → ᵞᵞ, en utilisant l'ensemble complet de données 2016 correspondant à une luminosité intégrée de 35,9 fb-1, sont présentés. / In this thesis, the measurement of the Higgs boson properties in the diphoton decay channel with the CMS experiment at the Large Hadron Collider (LHC) is presented. The focus of this work is the tṫH production mode, as it is the only direct access to the top quark Yukawa coupling, a fundamental parameter of the Standard Model. tṫH is a very rare process, two orders of magnitude smaller than the dominant Higgs boson production by gluon fusion. At 13 TeV, ttH production is about 4 times larger than at 8 TeV. This thesis takes over the studies performed at 8 TeV, where the statistics was not enough for an observation of ttH. Despite a very small branching ratio (only about 0.2%), the two photons decay channel of the Higgs boson is very promising, because of its excellent mass resolution (about 1%). Moreover, its signature in the detector is very clear. The diphoton decay channel is also of particular interest as it is the only channel allowing the study of all production modes: gluon fusion, vector boson fusion, associated productions with a W or a Z bosons, or with a top quark pair.The document starts with a theoretical introduction about the Standard Model and Higgs boson physics at LHC, followed by a description of the CMS detector. To achieve an excellent mass resolution in the H → ᵞᵞ channel, the electromagnetic calorimeter has to be calibrated. The laser monitoring system plays an important role in the calibration chain and it is described in details. On the long term, the laser monitoring system will have to be upgraded as level of radiation influences its electronics. I present my work on the possible upgrade of the laser monitoring system, along with the study of its possible precision.H → ᵞᵞ inclusive analysis had several iterations for conferences in 2016 and 2017. The strategy for 2017 is described in this document. An event classification is used to maximize the signal significance and to study specific Higgs boson production modes. My contributions to the H → ᵞᵞ analysis are primary vertex identification, photon identification and the study of the tṫH production mode. Each contribution is described in details in dedicated chapters. The tṫH, H → ᵞᵞ analysis is shown for two iterations in 2016 and 2017, with the emphasis on improvements in 2017 analysis. Finally, the results of the inclusive and tṫH, H → ᵞᵞ analysis, using the full 2016 dataset corresponding to an integrated luminosity of 35.9 fb-1, are shown.
174

Recherche de la désintegration du boson de Higgs en deux leptons taus dans l'expérience ATLAS / Search for the Higgs boson decay into a pair of taus in ATLAS

Hariri, Faten 30 October 2015 (has links)
Au LHC, l'un des buts essentiels à savoir était de trouver la dernière pièce manquante du modèle standard (MS), i.e. le boson de Higgs (H). La recherche fut couronnée de succès avec les données prises en 2012 et la découverte d'une nouvelle particule scalaire de masse ~126 GeV, se désintégrant en deux bosons (deux photons ou deux bosons électrofaibles ZZ or W+W-). Pour vérifier la compatibilité de la nouvelle particule avec les prédictions du MS, son couplage aux fermions devait être établi, ce qui motiva la recherche du Higgs dans le mode de désintégration en deux leptons taus ayant un rapport d'embranchement important. Dans ATLAS, cette analyse est divisée en trois canaux selon le mode de désintégration des leptons taus. Le travail présenté dans cette thèse concerne le canal “lepton-hadron”, où l'un des taus de l'état final se désintègre leptoniquement en un muon ou un electron, alors que l'autre se désintègre hadroniquement. Les canaux de l'analyse H→tau+ tau- sont caractérisés par de larges valeurs de l'énergie transverse manquante (MET) dans l'état final et adoptent la même technique pour identifier le lepton tau. Dans cette thèse, une contribution importante, mettant en relief l'amélioration obtenue avec une nouvelle MET, est montrée. En utilisant les traces chargées pour estimer la composante “molle” de MET dans les événements issus de collisions p-p, la sensibilité à l'empilement (pile-up), inévitable dans les collisionneurs hadroniques à haute luminosité, est bien réduite. Les erreurs systématiques associées à la composante molle ont été évaluées et leur dependence sur les conditions de pile-up et de modélisation de l'événement a été étudiée pour différentes définitions de MET. Ceci contribuera à améliorer les futures analyses H→tau+ tau-. Dans l'analyse “lepton-hadron”, le bruit de fond dominant provient des événements dont un jet de hadrons est mal identifié comme un tau se désintégrant hadroniquement (“fake tau”). Le travail discuté montre en détail l'estimation de ce bruit de fond pour les deux configurations les plus sensibles aux événements de signal H, i.e. les événements produits avec un Higgs bien boosté ou ceux produits par fusion de deux bosons vecteurs (mode VBF). L'état final de ces derniers est caractérisé par deux jets bien séparés en pseudorapidité, répartis sur les deux hemisphères, produits en association avec les produits de désintégration du H. Enfin, cette thèse rapporte une dernière contribution utilisant la théorie effective des champs pour la production du boson de Higgs et pour estimer les couplages de ce dernier (HEFT), et explorer la nouvelle physique au delà du MS de façon indépendante du modèle théorique. Le travail consiste à tester et valider le modèle “tauDecay” dans le cadre d'une caractérisation du Higgs utilisant HEFT au sein de Madgraph5_aMC@NLO. Après avoir écrit un outil permettant de fusionner les fichiers de production et de désintégration du Higgs (utile surtout en travaillant avec une précision au niveau NLO), la validation du modèle a été faite de 3 façons indépendantes: avec la génération d' événements au niveau d'éléments de matrice directement, avec l'outil créé et en désintégrant les taus avec MadSpin. Ce nouvel outil est prêt à être utilisé durant le Run-II du LHC. / In the LHC project, one of the major goals was the search for the last missing piece of the standard model (SM), namely the Higgs boson (H). The quest was successful during the Run I data taking in 2012 with the discovery of a new scalar of mass ~126 GeV, compatible with the SM Higgs boson, and decaying to two bosons (either two photons or two electroweak vector bosons ZZ or W+W-). To complete the picture, one needed to establish the couplings of the new particle to fermions. This motivated the search for the decay mode into two tau leptons predicted with a high branching ratio.Inside the ATLAS collaboration, the analysis was divided into three channels according to the decay modes of the tau pair. The work reported in this Ph.D describes the “ lepton-hadron ” analysis where one tau lepton decays leptonically into an electron or a muon and the other decays hadronically. Common features of all three analyses are the identification of the tau lepton and the presence of large missing transverse energy (MET) due to the escaping neutrinos from the tau decays. An important contribution reported in this dissertation concerns the improvement brought by a new MET determination. By using charged tracks to estimate the contribution of the soft energy component produced in the proton-proton collision, the sensitivity to the overlayed events (“ pile-up ”), unavoidable in a high luminosity hadron collider, is very much reduced. The systematic uncertainties associated to this soft component were estimated, their dependence on physics modeling and pile-up conditions studied for various track-based MET definitions. It will contribute to an improved H→tau+ tau- analysis with future data.In the lepton-hadron H analysis, the dominant background comes from events where a hadronic jet is misidentified as a hadronic tau (“ fake-tau ”). The work reports in detail how this fake-tau background has been estimated in the two most sensitive event configurations predicted for the H signal i.e. events where the H boson is highly boosted or produced by fusion of vector bosons (VBF); VBF events are characterized by two forward and backward jets in addition to the H decay products.Finally, the thesis reports on a last contribution performed with the Higgs Effective Field Theory (HEFT) to study the H couplings and probe new physics beyond SM in a model independent way. The work consisted in testing and validating the “TauDecay” model in association with the Higgs characterization framework in Madgraph5_aMC@NLO. After implementing a tool to merge H production and decay in a single step (especially useful with NLO requirements), the validation was done in three different ways: direct matrix element generation, with the implemented merging tool and using MadSpin to decay taus. The combined package is ready for use in the LHC Run II context.
175

Observation du mode de désintégration H→bb et de la production associée de VH avec le détecteur ATLAS / Observation of H→bb decays and VH production with the ATLAS detector

Ma, Yanhui 28 May 2019 (has links)
Une recherche du boson de Higgs du Modèle Standard produit en association avec un boson W ou Z et se désintégrant en une paire quark-antiquark b a été effectuée avec le détecteur ATLAS. Les données de collisions proton-proton utilisées ont été accumulées durant le Run 2 du Grand Collisionneur de Hadrons du CERN à une énergie dans le centre de masse de 13 TeV, et correspondent à une luminosité intégrée de 79.8 fb⁻¹. Trois canaux contenant zéro, un ou deux leptons chargés (électrons ou muons) sont considérés, correspondant à chacune des désintégrations leptoniques d'un boson W ou Z: Z->vv, W->lv et Z->ll. Pour un boson de Higgs de masse 125 GeV, un excès d'événements par rapport aux bruits de fonds des autres processus du Modèle Standard est observé avec un niveau de signification statistique de 4.9 déviations standard, à comparer à 4.3 attendues. Le rapport du nombre d'événements observé au nombre attendu est mesuré être 1.16 +0.27/-0.25 = 1.16 +/-0.16(stat) +0.21/-0.19(syst). Ce résultat est combiné avec d'autres d'ATLAS sur la recherche du boson de Higgs se désintégrant dans le mode bbbar, utilisant des données du Run 1 et du Run 2. Le niveau de signification mesuré (attendu) pour ce mode de désintégraion est de 5.4 (5.5) déviations standard, ce qui en constitue la première observation directe. De plus, une combinaison des résultats du Run 2 sur la recherche de la production associée du boson de Higgs et d'un boson W ou Z conduit à un niveau de signification observé (attendu) de 5.3 (4.8) déviations standard, et donc à la première observation de ce mode de production. / A search for the Standard Model Higgs boson produced in association with a W or Z boson, and decaying to a bb pair has been performed with ATLAS detector. The data were collected in proton-proton collisions during Run 2 of the Large Hadron Collider at a centre-of-mass energy of 13 TeV, and correspond to an integrated luminosity of 79.8 fb⁻¹. Three channels containing zero, one and two charged leptons (electrons or muons) have been considered to target each of the leptonic decays of the W or Z boson, Z->vv, W->lv et Z->ll, referred to as as the 0-lepton, 1-lepton and 2-lepton channels, respectively. For a Higgs boson mass of 125 GeV, an excess of events over the expected background from other Standard Model processes is found with an observed significance of 4.9 standard deviations, compared to an expectation of 4.3 standard deviations. The ratio of the measured signal events to the Standard Model expectation equal 1.16 +0.27/-0.25 = 1.16 +/-0.16(stat) +0.21/-0.19(syst). The result is also combined with the other results from the searches for the Higgs boson in the bb 18 decay mode in Run 1 and Run 2, the combination yields an observed (expected) significance of 5.4 (5.5) 20 standard deviations, and therefore provides a direct observation of the Higgs boson decay into a bb pair. In addition, a combination of Run 2 results searching for the Higgs boson produced in association with a W or Z boson yields an observed (expected) significance of 5.3 (4.8) standard deviations, and therefore provides a direct observation of Higgs boson being produced in association with a W or Z boson.
176

The Discovery Potential of Neutral Supersymmetric Higgs Bosons with Decay to Tau Pairs at the ATLAS Experiment

Schaarschmidt, Jana 15 November 2010 (has links)
This work presents a study of the discovery potential for the neutral supersymmetric Higgs bosons h/A/H decaying to tau pairs with the ATLAS experiment at the LHC. The study is based on Monte Carlo samples which are scaled to state-of-the-art cross sections. The analyses are designed assuming an integrated luminosity of 30 1/fb and a center-of-mass energy of sqrt(s) = 14 TeV. The results are interpreted in the mmax h benchmark scenario. Two final states are analyzed: The dileptonic channel where the two tau leptons decay to electrons or muons and the lepton-hadron channel where one tau decays to an electron or muon and the other tau decays to hadrons. The study of the dilepton channel is based completely on the detailed ATLAS simulation, the analysis of the lepton-hadron channel is based on the fast simulation. The collinear approximation is used to reconstruct the Higgs boson mass and its performance is studied. Cuts are optimized in order to discriminate the signal from background and to maximize the discovery potential given a certain Higgs boson mass hypothesis. In the lepton-hadron channel the selection is split into two analyses depending on the number of identified b-jets. Procedures to estimate the dominant backgrounds from data are studied. The shape and normalization of the Z to tautau background are estimated from Z to leptonlepton control regions. The ttbar contributions to the signal regions are estimated from ttbar control regions. The individual analyses are combined and sensitivity predictions are made depending on the Higgs boson mass mA and the coupling parameter tanβ. The light neutral MSSM Higgs bosons with mA = 150 GeV can be discovered when at least tanbeta = 11 is realized in nature. The heavy neutral MSSM Higgs bosons with mA = 800 GeV can be discovered for tanbeta ≥ 44. However, due to the large width of the reconstructed Higgs boson mass and the mass degeneration, only the sum of at least two of the three Higgs boson signals will be visible.
177

A Cross Section Measurement Of Events With Two Muons At The $Z^{0}$ Resonance And At Least One Heavy Flavour Jet At The ATLAS Experiment Of The Large Hadron Collider

Steinbach, Peter 16 July 2012 (has links)
In 2010, the Large Hadron Collider (\\lhc{}) at the European Organisation for Nuclear Research (CERN) near Geneva (Switzerland) came into full operation providing proton-proton collisions at a centre-of-mass energy of $\\sqrt{s} = \\unit[7]{TeV}$. \\lhc{} data may allow the observation of the Higgs boson, the last unknown building block of the standard model of particle physics (SM). Di-muon final states containing heavy flavour jets pose an irreducible background for searches of the Higgs boson as predicted the SM or theories beyond. They also provide a unique testbed for tests of perturbative Quantum Chromo-Dynamics (pQCD). This thesis provides a measurement of the cross section of events with one di-muon pair with an invariant mass in the \\Z{} mass region and at least one heavy flavour jet. Studies on acceptance and systematic effects of the experimental setup are presented as well as a comparison to theoretical predictions. The total inclusive cross section of \\zbFS{} events was observed as $\\sigma(\\mu^{+}\\mu^{-}+b+X) = \\unit[(4.15 ^{+0.97}_{-0.89} (stat.) ^{+0.45}_{-0.53} (syst.))]{pb} $ from the equivalent of $\\unit[36]{pb^{-1}}$ of data. Agreement with pQCD predictions at next-to leading order (NLO) is found while tensions with leading order (LO) predictions are observed. Further, the cross-section ratio \\RwZ{} with events containing two muons and at least one jet of any origin was measured to $\\mathcal{R} = \\unit[4.6 ^{+1.4}_{-1.2} (stat.) \\pm 0.5 (syst.)]{\\%}$. This is found to agree with NLO and LO calculations within known uncertainties.
178

Z to tau tau Cross Section Measurement and Liquid-Argon Calorimeter Performance at High Rates at the ATLAS Experiment

Seifert, Frank 10 January 2013 (has links)
In this study, a measurement of the production cross section of Standard Model Z bosons in proton-proton collisions in the decay channel Z to tau tau is performed with data of 1.34 fb-1 - 1.55fb-1 recorded by the ATLAS experiment at the LHC at a center-of-mass energy of 7 TeV. An event selection of the data is applied in order to obtain a sample enriched with Z to tau tau events. After background estimations using data and Monte Carlo (MC) simulations, the fiducial cross sections in the sub-channels Z to tau tau to e tau_h + 3nu and Z to tau tau to mu tau_h + 3nu are measured. Together with the geometrical and kinematical acceptance, A_Z, and the well known tau lepton branching fractions, these results are combined to a total inclusive Z to tau tau cross section. A_Z is obtained from MC studies only, and the combination of the channels is done including statistical and systematical uncertainties using the BLUE method. The result is a measured total inclusive cross section of 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. This is in agreement with theoretical predictions from NNLO calculations of 964 plus minus 48 pb and also with measurements previously performed by the ATLAS and CMS experiments. With the increased amount of data, the statistical uncertainty could be reduced significantly compared to previous measurements. Furthermore, a testbeam analysis is performed to study the operation of the electromagnetic and hadronic endcap calorimeters, EMEC and HEC, and of the forward calorimeter, FCal, in the high particle fluxes expected for the upgraded LHC. The high voltage return currents of the EMEC module are analysed in dependence of the beam intensity. The results are compared to model predictions and simulations to extract the point of critical operation. Overall, the results for the critical beam intensities and the critical high voltage currents are in agreement with the predictions, but the assigned uncertainties are rather large. The general behaviour of the high voltage current in dependence of the beam intensity above the critical intensity could be confirmed very well. The testbeam data show that the EMEC can be operated up to highest LHC luminosities, and that ATLAS conserves its excellent calorimeter performance in this detector area.:Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24 2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29 2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34 3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42 3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55 4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55 4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58 4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61 4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62 4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63 4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65 4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67 4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72 4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80 5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89 5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89 5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90 5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92 5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106 5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108 5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110 5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111 5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112 5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112 5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112 5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115 6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123 B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 / In dieser Studie wird eine Wirkungsquerschnittsmessung des Standardmodell-Z-Bosons im Zerfallskanal Z nach tau tau mit Kollisionsereignissen entsprechend 1.34 fb-1 bis 1.55 fb-1 aufgezeichneter Daten des ATLAS-Experiments am LHC bei einer Schwerpunktsenergie von 7 TeV durchgefuehrt. Hierbei kommt eine spezielle Ereignisselektion der Daten zum Einsatz, die zum Ziel hat, einen mit Z nach tau tau Ereignissen angereicherten Datensatz zu erhalten. Nach einer Untergrundabschaetzung mit Hilfe von experimentellen Daten und Monte-Carlo(MC)-Simulationen wird eine spezifische Wirkungsquerschnittsmessung in den Unterkanaelen Z nach tau tau nach e tau_h + 3nu und Z nach tau tau nach mu tau_h + 3nu erreicht, welche zunaechst nur Ereignisse in der geometrischen und kinematischen Akzeptanzregion umfasst. Zusammen mit der Selektionseffizienz dieser Akzeptanzregion, A_Z, und den bekannten Tau-Lepton-Verzweigungsverhaeltnissen koennen diese Ergebnisse zu einem totalen, inklusiven Z nach tau tau Wirkungsquerschnitt kombiniert werden. Hierbei wird A_Z ausschliesslich aus MC-Studien bestimmt und die Kombination unter Beruecksichtigung der statistischen und systematischen Fehler der Einzelkanaele mit der BLUE-Methode durchgefuehrt. Das Ergebnis ist ein totaler, inklusiver Wirkungsquerschnitt von 914.4 plus minus 14.6(stat) plus minus 95.1(syst) plus minus 33.8(lumi) pb. Dies stimmt innerhalb der Messunsicherheiten sowohl mit theoretischen Vorhersagen aus NNLO Rechnungen von: 964 plus minus 48 pb als auch mit Messungen, die zuvor im Zuge der ATLAS- und CMS-Experimente durchgefuehrt wurden, ueberein. Im Vergleich zu den bisherigen Messungen koennen die statistischen Fehler mit dem groesseren Datensatz deutlich reduziert werden. Weiterhin wird eine Teststrahlstudie zur Pruefung der Funktionalitaet der elektromagnetischen und hadronischen Endkappenkalorimeter, EMEC und HEC, und des Vorwaertskalorimeters FCal in den zukuenftigen, hohen Teilchenflussdichten des verbesserten LHC praesentiert. Die Hochspannungsstroeme des EMEC-Moduls werden in Abhaengigkeit von der Strahlintensitaet analysiert. Weiterhin werden die Ergebnisse mit Modellvorhersagen und Simulationen verglichen, um die Punkte nichtlinearen (kritischen) Betriebes zu extrahieren. Die Ergebnisse fuer die kritische Strahlintensitaet und die kritischen Stroeme stimmen mit Modellrechnungen und Simulationen ueberein, die jedoch mit grossen Unsicherheiten behaftet sind. Das vorhergesagte Verhalten der Hochspannungsstroeme in Abhaengigkeit von der Strahlintensitaet oberhalb der kritischen Intensitaet konnte sehr genau bestaetigt werden. Die Teststrahldaten zeigen, dass das EMEC bis zu den hoechsten LHC-Luminositaeten arbeiten kann und ATLAS in dieser Detektorregion seine exzellenten Kalorimetereigenschaften beibehaelt.:Contents List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 List of Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Theoretical Foundation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 The Standard Model of Particle Physics . . . . . . . . . . . . . . . . . . . . 19 2.1.1 Phenomenological Overview . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 21 2.1.3 Electroweak Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.1.4 Particle Masses and the Higgs Mechanism . . . . . . . . . . . . . . . 24 2.1.5 Quantum Chromo Dynamics . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Z Boson Production and Decay at the LHC . . . . . . . . . . . . . . . . . . 29 2.3 Event Generation and Simulation . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.1 The Partonic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.3.2 Hadronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.3 The Underlying Event . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.3.4 Detector Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.4 Cross Section Predictions for Z Boson Production at the LHC . . . . . . . . 34 3 The LHC and the ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 The ATLAS Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.2.1 The Inner Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.2.2 The Electromagnetic Calorimeter . . . . . . . . . . . . . . . . . . . . 42 3.2.3 The Hadronic Calorimeter . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2.4 The Muon Spectrometer . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.2.5 Luminosity Measurement . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2.6 The Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.2.7 Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4 Testbeam Study of Liquid-Argon Calorimeter Performance at High Rates . . . . 55 4.1 Upgrade Plans of the LHC and the ATLAS Calorimeters . . . . . . . . . . . 55 4.2 Testbeam Parameters and Setup . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3 The Calorimeter Test Modules . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.4 Test Module Readout and Signal Degradation . . . . . . . . . . . . . . . . . 58 4.5 Measurement and Analysis of the HV Currents . . . . . . . . . . . . . . . . . 61 4.5.1 Device for Precision HV Current Measurement . . . . . . . . . . . . . 62 4.5.2 Testbeam Data Taking . . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.5.3 Analysis of the EMEC Currents . . . . . . . . . . . . . . . . . . . . . 63 4.5.4 Beam Intensity Measurement . . . . . . . . . . . . . . . . . . . . . . 65 4.5.5 Comparison of EMEC Currents to Beam Intensity . . . . . . . . . . . 67 4.5.6 Discussion Considering the Predictions . . . . . . . . . . . . . . . . . 72 4.6 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5 Z → τ τ Cross Section Measurement with 1.34-1.55 fb−1 . . . . . . . . . . . . . . . . . . . . 75 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Data and Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2.1 Trigger Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.3 Pile-up Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.4 Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3 Event Preselection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.1 Good Run List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.3.2 Vertex Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3.3 Calorimeter Jet Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.4 Liquid-Argon Calorimeter Hole Cleaning . . . . . . . . . . . . . . . . 80 5.4 Reconstructed Physics Objects . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.4.1 Muons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.2 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.4.3 Jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.4 Taus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 5.4.5 Missing Transverse Energy . . . . . . . . . . . . . . . . . . . . . . . . 86 5.4.6 Overlap Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.5 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.1 Dilepton Veto . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5.2 Opposite Charge Between the Lepton and the Hadronic Tau Candidate 89 5.5.3 Reduction of W+jets Background . . . . . . . . . . . . . . . . . . . . 89 5.5.4 Final Requirements on the Tau Candidate . . . . . . . . . . . . . . . 90 5.5.5 Visible Mass Window . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.5.6 Summary of the Event Selection . . . . . . . . . . . . . . . . . . . . . 92 5.6 Tau Identification Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 5.7 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.1 W+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.7.2 Z+jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.7.3 QCD Multijet Events . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.8 Cross Section Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.9 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.9.1 Trigger Efficiencies and Scale Factors . . . . . . . . . . . . . . . . . . 106 5.9.2 Reconstruction, Identification and Isolation Efficiencies of the Muons and Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.9.3 Identification Efficiency of the Hadronically Decaying Tau . . . . . . 108 5.9.4 Background Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 109 5.9.5 Geometrical and Kinematical Acceptance AZ . . . . . . . . . . . . . 110 5.9.6 Energy Scale Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 111 5.9.7 Further Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . 112 5.9.8 Summary of Systematic Uncertainties . . . . . . . . . . . . . . . . . . 112 5.10 Combination of the Channels and Results . . . . . . . . . . . . . . . . . . . 112 5.11 The Z → τ τ Cross Section Measurement in the LHC Physics Context . . . . 115 6 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 A Gauge Invariance in Quantum Electrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.1 Local gauge invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 A.2 Gauge invariance of the Maxwell-Equations . . . . . . . . . . . . . . . . . . . 123 B Testbeam Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C Tau Trigger Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 C.2 Tau Trigger Efficiency Measurement . . . . . . . . . . . . . . . . . . . . . . . 132 C.3 Systematic Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
179

Search for the production of a Higgs boson decaying into a pair of bottom quarks in association with a pair of top quarks at 13 TeV with the ATLAS detector

Nechansky, Filip 12 July 2021 (has links)
Die Entdeckung des Higgs-Bosons im Jahr 2012 bestätigt das Standardmodell als die erfolgreichste Theorie, die die grundlegenden Wechselwirkungen von Elementarteilchen beschreibt. Eine der wichtigen Eigenschaften des Higgs-Bosons ist seine Yukawa-Kopplung an das Top-Quark, die aufgrund der hohen Masse des Quarks im Standardmodell am stärksten ist. Diese Arbeit berichtet über eine Messung der Top-Yukawa-Kopplung mit Daten, die vom ATLAS-Detektor von 2015 bis 2018 bei einem Massenschwerpunkt von 13 TeV aufgezeichnet wurden. Die Kopplung wird in ttH(bb)-Ereignissen untersucht, einem Endzustand, der die Zerfälls-produkte von zwei Top-Quarks enthält und in dem zusätzlich ein Higgs-Boson emittiert wird, welches in Bottom-Quark-Paar zerfällt. Dieser Zerfallskanal des Higgs-Bosons hat das größte Verzweigungsverhältnis, wird jedoch durch die Beschreibung des dominanten Untergrundprozesses ttbb, ein Top-Quark-Paar mit zwei zusätzlichen b-Quarks im Endzustand systematisch beschränkt. Die Messung nutzt die Fähigkeit des ATLAS-Detektors, Jets von einem b-Quark zu identifizieren, um Analysebereiche mit verschiedenen Zusammensetzungen von Signal und Untergrund zu konstruieren. Um das Signal weiter zu separieren, wird eine Reihe von multivariaten Algorithmen verwendet und der ttH-Prozess wird unter Verwendung eines Profile-Likelihood-Fits extrahiert. Die Ergebnisse werden für den Kanal mit einem einzelnen Lepton im Endzustand und für eine Kombination mit dem Dilepton-Kanal gezeigt. Die Untergrundgenauigkeit wird im Detail untersucht, wobei große Fehlmodellierungen festgestellt werden. Das gemessene Verhältnis der ttH-Produktion zur Standardmodell-Vorhersage beträgt mu(ttH) = 0,84+0,45- 0,39 (syst.) +-0,21 (stat.). Das Ergebnis stimmt mit der Vorhersage des Standardmodells überein und entspricht einer beobachteten (erwarteten) Signifikanz von 1,9 sigma (2,3 sigma), eine Verbesserung gegenüber der vorherigen ATLAS-Messung, bei der eine Signifikanz von 1,4sigma (1,6 sigma) ermittelt wurden. / The discovery of the Higgs Boson in 2012 confirms the Standard Model as the most successful theory describing the fundamental interactions of elemental particles. One of the important properties of the Higgs boson is its Yukawa coupling to the top quark, which in the Standard Model is the strongest due to the high mass of the quark. This thesis reports on a measurement of the top-Yukawa coupling with data collected by the ATLAS detector from 2015 to 2018 at 13 TeV center of mass energy. The coupling is studied in ttH(bb) events, a final state containing decay products of two top quarks with additional emission of a Higgs boson, where the Higgs decays into a pair of bottom quarks. This decay channel of the Higgs Boson has the largest branching ratio, but is systematically limited by the description of the dominant background process ttbb, a tt with additional two b quarks in the final state. The measurement takes advantage of the ability of the ATLAS detector to identify jets coming from a b quarks to construct analysis regions with various compositions of the signal and the background. To further separate the signal, a series of multivariate algorithms is employed and the ttH process is then extracted using a profile likelihood fit. The results are shown for the channel with a single lepton in the final state and for a combination with the dilepton channel. The background performance is studied in detail, where large mis-modeling is found. The measured ratio of the ttH production compared to the Standard Model prediction is found to be mu(ttH) = 0.84 +0.45 -0.39 (syst.) +-0.21 (stat.). The result is in agreement with the Standard Model prediction and corresponds to an observed (expected) significance of 1.9 sigma (2.3 sigma), an improvement compared to the previous ATLAS measurement which reported 1.4 sigma (1.6 sigma).
180

Measurement of W bosons in p-Pb at 8.16 TeV and charmonia in Pb-Pb at 5.02 TeV with the CMS detector at the LHC / Mesure des bosons W en p-Pb à 8.16 TeV et des charmonia en Pb-Pb à 5.02 TeV avec le détecteur CMS au LHC

Ståhl, André 08 October 2018 (has links)
Les collisions d’ions lourds à haute énergie du grand collisionneur de hadrons, permettent d'étudier les propriétés de la matière nucléaire et de produire l'état chaud et dense de la matière déconfinée connu sous le nom de plasma de quarks et de gluons (QGP). Afin d'étudier les effets dus à la matière nucléaire dans les collisions d'ions lourds, la production de deux sondes dures importantes est étudiée dans cette thèse: les bosons W et les charmonia (mésons J/ψ et ψ(2S)).Les effets de la matière nucléaire froide, associés à la modification nucléaire des fonctions de distribution des partons (PDF), peuvent être caractérisés en étudiant la formation des bosons W dans les collisions d'ions lourds. En effet, la production des bosons W est déterminée par la diffusion dure initiale, puisque ces bosons n'interagissent pas fortement avec le milieu induit par la collision. L'analyse de la production des bosons W dans les collisions p-Pb à sqrt(s[NN]) = 8,16 TeV avec le détecteur CMS est présentée dans la première partie de cette thèse. Les résultats sont en bon accord avec les calculs des PDFs incluant les modifications nucléaires, alors qu'ils excluent significativement l'hypothèse de nucléons libres, pour des fractions d’impulsion x petite. Puisque les mesures sont plus précises que les calculs des modèles, les résultats des bosons W ont le potentiel de contraindre les paramétrisations des PDF nucléaires, ce qui pourrait améliorer notre compréhension des effets des PDF sur d'autres sondes dures, comme les charmonia.La production des charmonia est sensible à la formation et à l'évolution du milieu forte interaction formé lors de collisions d'ions lourds, en faisant ainsi une excellente sonde du QGP. La suppression ou l'augmentation des différents états du charmonium sont considérées comme des signatures de la présence du QGP. Dans cette thèse, la production prompte et non-prompte des mésons J/ψ est mesurée dans des collisions Pb-Pb à sqrt(s[NN]) = 5,02 TeV. De plus, la modification des mésons ψ(2S) par rapport aux mésons J/ψ est mesurée pour le même système de collision. Le facteur de modification nucléaire des charmonia est déterminé en fonction de la centralité, de la rapidité et de l'impulsion transverse pT. La production des mésons J/ψ prompts est supprimée dans les collisions Pb-Pb par rapport aux collisions p-p normalisés par le nombre de collisions binaires, bien qu'une suppression plus faible soit observée à 3 < pT < 6,5 GeV/c dans les collisions centrales. La production des quarks b, sondés par les charmonia non prompts, est également supprimée dans toute la région cinématique mesurée, et une plus faible suppression est observée à haut pT. En ce qui concerne les mésons ψ(2S), ils se révèlent plus fortement supprimés que les mésons J/ψ dans les collisions Pb-Pb. / Heavy ions are collided at high energies at the Large Hadron Collider, allowing to study the properties of nuclear matter and to produce the hot and dense state of deconfined matter known as the Quark-Gluon Plasma (QGP). In order to probe the nuclear matter effects present in heavy-ion collisions, this thesis study the production of two important hard probes: W bosons and charmonia (J/ψ and ψ(2S) mesons).The cold nuclear matter effects, associated to the nuclear modification of the parton distribution functions (PDFs), can be characterised by studying the formation of W bosons in heavy-ion collisions. The production of W bosons represents an important tool to asses the PDF modifications, which impact the initial hard scattering, since these bosons do not interact strongly with the collision-induced medium. The analysis of the W-boson production in p-Pb collisions at sqrt(s[NN]) = 8.16 TeV with the CMS detector is presented in the first part of this thesis. The results are in good agreement with PDF calculations including nuclear modifications, while they strongly disfavour the free-nucleon hypothesis at small momentum fractions x. Since the measurements are more precise than the model calculations, the W-boson results have the potential to constrain the nuclear PDF parametrisations, which could eventually improve our understanding of the PDF effects on other hard probes, such as charmonia.The production of charmonia is sensitive to the formation and evolution of the strongly-interacting medium formed in heavy-ion collisions, thus making of it an excellent probe of the QGP. The suppression or enhancement of the different charmonium states is considered a signature of the presence of the QGP. In this thesis, the production of prompt and nonprompt J/ψ mesons is measured in Pb-Pb collisions at sqrt(s[NN]) = 5.02 TeV. In addition, the modification of the ψ(2S) mesons relative to J/ψ mesons is reported for the same collision system. The nuclear modification factor of charmonia is determined as a function of centrality, rapidity and transverse momentum pT. The production of prompt J/ψ mesons is suppressed in Pb-Pb collisions compared to binary-scaled p-p collisions, although a weaker suppression is observed at 3 < pT < 6.5 GeV/c in central Pb-Pb collisions. The production of b quarks, probed by the nonprompt charmonia, are also suppressed over the full kinematic region measured, and a reduced suppression is observed at high pT. Regarding the ψ(2S) mesons, they are found to be more strongly suppressed than J/ψ mesons in Pb-Pb collisions.

Page generated in 0.0436 seconds