• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 13
  • 4
  • 2
  • Tagged with
  • 105
  • 105
  • 35
  • 27
  • 23
  • 23
  • 15
  • 14
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Experimental and computational investigation of film cooling on a large scale C3X turbine vane including conjugate effects

Dyson, Thomas Earl 30 January 2013 (has links)
This study focused on the improvement of film cooling for gas turbine vanes using both computational and experimental techniques. The experimental component used a matched Biot number model to measure scaled surface temperature (overall effectiveness) distributions representative of engine conditions for two new configurations. One configuration consisted of a single row of holes on the pressure surface while the other used numerous film cooling holes over the entire vane including a showerhead. Both configurations used internal impingement cooling representative of a 1st vane. Adiabatic effectiveness was also measured. No previous studies had shown the effect of injection on the mean and fluctuating velocity profiles for the suction surface, so measurements were made at two locations immediately upstream of film cooling holes from the fully cooled cooling configuration. Different blowing conditions were evaluated. Computational tools are increasingly important in the design of advanced gas turbine engines and validation of these tools is required prior to integration into the design process. Two film cooling configurations were simulated and compared to past experimental work. Data from matched Biot number experiments was used to validate the overall effectiveness from conjugate simulations in addition to adiabatic effectiveness. A simulation of a single row of cooling holes on the suction side also gave additional insight into the interaction of film cooling jets with the thermal boundary layer. A showerhead configuration was also simulated. The final portion of this study sought to evaluate the performance of six RANS models (standard, realizable, and renormalization group k-ε; standard k-ω; k-ω SST; and Transition SST) with respect to the prediction of thermal boundary layers. The turbulent Prandtl number was varied to test a simple method for improvement of the thermal boundary layer predictions. / text
12

Low-Reynolds-number turbulent boundary layers

Erm, Lincoln Paul Unknown Date (has links) (PDF)
This thesis documents an extensive experimental investigation into low-Reynolds-number turbulent boundary layers flowing over a smooth flat surface in nominally zero pressure gradients. The way in which these layers are affected by variations in R(theta), i.e. the Reynolds number based on the boundary-layer momentum thickness, type of tripping device used and variations in freestream velocity, each considered independently, are investigated.
13

Influence of surface topography and lubricant design in gear contacts

Bergseth, Ellen Unknown Date (has links)
The purpose of this thesis was to study the influence of manufacturing variations on gear performance. The manufacturing variations inherent in different manufacturing methods were studied to include the effect of real surfaces. Real surfaces have surface irregularities at least on some scale, which can significantly influence how loads are transmitted at the gear contact. To some extent, the lubricant design can help to prevent contact that could lead to tooth failures by forming a protective surface boundary layer. An experimental study was used to consider the compositions of these layers with a surface analysis method. In Paper A a robust design approach was used to find out to what extent the current standard for calculation of surface durability treats manufacturing variations and the choice of lubricant. The results show that the simplest calculation method used is not enough to predict the effect of these on surface durability. Additionally, the standard quality levels are poorly incorporated in the standard calculating procedures for surface durability, and the quality of the gear tooth is restricted to include only a few parameters. In Paper B a pin-on-disc machine was used to evaluate the tribofilm formation by the additives and the corresponding wear occurring in the boundary lubrication regime in environmentally adapted lubricants. Studies of the additive and base fluid interaction were carried out using glow discharge-optical emission spectroscopy. It was found that the chemically reacted surface boundary layers played an important role in terms of wear. More specifically, the oxide layer thickness had significant influence on wear. The findings also demonstrate the complexity of lubrication design formulations coupled to these layers. For example, it was found that the pre-existing surface boundary layer (before any lubricant had been added) played an important role in allowing the lubricant to react properly with the surfaces. The aim of Paper C was to contribute to the knowledge of how different surface topographies, tied to manufacturing methods, influence the early life contact conditions in gears. Topographical measurements of differently manufactured tooth flanks were used as data input to a contact analysis program. The variation in surface topography inherent in the manufacturing method was found to have a strong influence on the contact area ratio.
14

Control of Görtler Vortices in High-Speed Boundary Layers

Alaziz, Radwa 08 December 2017 (has links)
Görtler vortices develop in boundary layer flows over concave surfaces due to the imbalance between centrifugal forces and the wall-normal pressure gradient. These vortices can be efficient precursors to transition in boundary layers exposed to free-stream disturbance or surface non-uniformities, because they can alter the mean flow causing the laminar flow to breakdown into turbulence. In this thesis, a control technique aimed at reducing the energy associated with Görtler vortices that develop in supersonic boundary layers is introduced and tested. The control algorithm is based on distributed blowing and suction, with sensors placed either in the flow or at the wall. The result show that there is a dependence between the efficiency of the control algorithm and the spanwise separation of the vortices, that is the energy reduction is more significant for larger spanwise separations. The efficiency of the control algorithm seems to be insensitive to the variation of the Mach number.
15

The Resolution and Structure of High Reynolds Number Turbulent Boundary Layers Over Rough and Smooth Walls in Pressure Gradient

Vishwanathan, Vidya 19 January 2023 (has links)
The velocity fields of high Reynolds number, turbulent, wall boundary layers in non-equilibrium pressure gradients are experimentally investigated. Experiments in two wall configurations were performed; one with a hydrodynamically smooth test wall composed of flat aluminum panels, and the other with a rough surface consisting of 2 mm tall, staggered, circular cylindrical elements. A representative set of pressure gradient distributions were generated on the research wall by a systematically rotated NACA 0012 airfoil placed in a wind tunnel section to determine the functional dependence of the boundary layer formation on pressure gradient. Particle image velocimetry (PIV) was the primary measurement technique used to determine time-resolved features of the velocity flow field. newline{}newline{} It is shown that regardless of wall condition and Reynolds number, the non-equilibrium turbulent boundary layers exhibit increasingly non-local behavior with streamwise development. This is apparent as a lag to the pressure gradient distribution observed in the streamwise developing integrated boundary layer parameters. These ``history effects" are also prevalent in mean velocity profiles which are exhibited as a cross-over of the favorable and adverse pressure gradient profiles in the logarithmic layer. Similar cross-over points are observed in the Reynolds shear and normal stresses, particularly at the streamwise station downstream of the pressure gradient switch. The primary effect of the rough wall is to increase the magnitude of flow scales, and, while they exhibit the same qualitative history effects as the smooth wall, the rough wall flows show an earlier relaxation to equilibrium. Despite inherent uncertainties of indirect skin friction methods for the rough wall, the effective sandgrain roughness parameter k_s does not show a functional dependency to pressure gradient history. An evaluation of the wall-similarity hypothesis solely based on boundary layer thickness to roughness parameter ratios delta/k_s is insufficient and additional parameters such as pressure gradient histories, local roughness Reynolds numbers, and bias uncertainties due to instrument spatial resolution must be considered. / Doctor of Philosophy / In the interface between a surface and a moving fluid is the boundary layer where high shear and viscous stresses cause the bulk velocity to decrease to zero. When turbulent, this region of fluid is characterized by random, chaotic, and fluctuating motions of varying sizes. Parameters such as pressure gradients and geometric irregularities of the surface, referred to as roughness, can increase fluctuating pressures and velocities within the boundary layer and cause unwanted noise, vibration, and increased drag. Although many studies have evaluated boundary layers with either roughness or pressure gradient independently, most surfaces in practical application are susceptible to the compounding influences of both of these parameters. Thus, it is necessary to expand the current knowledge database to include complex flow fields necessary to improve data driven modeling and vehicle design.newline{}newline{} This study focuses on experimental observations of the turbulent velocity field developing in both a rough and smooth wall boundary layer that is induced to a family of bi-directional pressure gradients generated by the pressure field of a rotating airfoil inside in a wind tunnel. Through statistical observations of the velocity field it was found that the varying pressure gradients caused the flow to develop non-local dependencies such that the response of the downstream boundary layer was dependent on the upstream flow history. The principal effect of roughness was to increase the magnitude of turbulent scales, but to show the same qualitative response to the pressure gradient history as seen in a smooth wall flow. However, direct comparison of rough and smooth wall turbulence statistics by means of the ``wall-similarity hypothesis" requires careful consideration of multiple parameters including these flow histories, scales prescribed by roughness parameters, and bias errors from experiment under-resolution of the velocity field.
16

Phase transitions in surfactant monolayers

Casson, Brian Derek January 1998 (has links)
No description available.
17

Perturbations singulières pour des EDP linéaires et non linéaires en presence de discontinuités

Hamouda, Makram 21 December 2001 (has links) (PDF)
Ma thèse porte sur l'étude des couches limites et de perturbations singulières (\textit{i.e.} des problèmes caractérisés par la présence d'un petit paramètre qui tend vers zéro) dans des conditions plus délicates que d'habitude, à savoir lorsque la solution limite n'est pas régulière. Je considère ainsi deux classes de problèmes réguliers associes à un laplacien et à un bilaplacien, et un problème non linéaire dérivé du problème de Plateau (surfaces minimas), pour lequels la fonction limite possède une singularité (discontinuité simple pour les premiers problèmes, dérivée normale infinie sur certaines parties de la frontière pour le second).\\ La première partie de cette thèse est consacrée à l'étude de deux modèles linéaires singuliers associés à des perturbations singulières pour des EDPs ayant une fonction source singulière. Ce type d'équations fait l'objet de plusieurs applications, par exemple les problèmes de flambement en élasticité, les tourbillons singuliers en mécanique des fluides, le problème de la charge critique pour une poutre ou une plaque élastoplastique, le problème du contrôle automatique de la trajectoire d'un mobile et le problème du bord arrière pour l'écoulement autour d'une aile. De manière classique, la présence d'un petit paramètre dans des équations aux dérivées partielles entraîne, dans certains cas, l'apparition d'une couche limite classique près du bord du domaine pour la solution dite régularisée. Cependant, si on considère en plus une fonction source discontinue (voire une distribution), on constate que de nouvelles couches limites apparaissent à l'intérieur du domaine; l'étude de celles-ci constitue le principal but de cette première partie. Dans la deuxième partie, on s'intéresse à l'étude du problème des surfaces minimales sur une couronne. Pour certaines classes de données au bord, ce problème n'admet pas de solution et sa solution faible dite ``généralisée'' admet une dérivée infinie. On introduit alors une méthode de régularisation elliptique qui entraîne une couche limite près du bord. Le résultat fondamental de cette partie consiste à donner explicitement une approximation pour cette solution régularisée.
18

Structure Of Sink Flow Boundary Layers

Ajit, Dixit Shivsai 10 1900 (has links)
The work reported in this thesis is an experimental and theoretical investigation of the so-called sink flow boundary layers. These are two-dimensional (in the mean), favourable-pressure-gradient (FPG) boundary layer flows where the boundary layers experience stream-wise acceleration inside a two-dimensional convergent channel with smooth and plane walls. The boundary layers studied are mainly turbulent with few cases that may be identified as reverse-transitional. The sink flow turbulent boundary layers (TBLs) are the only smooth-walled layers that are in ‘perfect equilibrium’ or ‘exact self-preservation’ in the sense of Townsend (1976) and Rotta (1962). The present boundary layer experiments were conducted in an open-return low-speed wind tunnel. The sink flow conditions were established on the test-plate by using a contoured test-section ceiling for creating a convergent channel with smooth and plane walls. The strength of the streamwise FPG was varied by changing the freestream speed in the test-section. Few zero-pressure-gradient (ZPG) turbulent boundary layers were also measured in the same tunnel for which the contoured ceiling was replaced by a straight one. The velocity measurement techniques used include conventional Pitot-tubes for mean flow measurements and hotwire/crosswire probes for turbulence measurements. For measurement of skin friction in ZPG flows, Preston-tube was used while for the sink flows the so-called surface hotwire method was employed. Static pressures were measured on the test-surface using an alcohol-based projection manometer. Boundary layers were tripped at the beginning of the test-plate to ensure quick transition to turbulence. The mean velocity scaling in sink flow TBLs in the presence of strong FPG has been studied systematically, especially in view of the apparent pressure-gradient-dependence of the logarithmic laws reported in the literature (Spalart & Leonard, 1986; Nickels, 2004; Chauhan et al., 2007). The experimental study of sink flow TBLs carried out over a wide range of streamwise FPGs has shown that the mean velocity profiles (in inner coordinates) exhibit systematic departures from the universal logarithmic law as the pressure gradient parameter ∆p is varied. Even so, each of these profiles exhibits a logarithmic region, albeit non-universal, whose constants are functions of the pressure gradient. Systematic dependence of these constants on the pressure gradient parameter ∆p is observed. Moreover, the wake region is uniformly absent in all these profiles. In other words, each profile looks like a ‘pure wall-flow’, in the sense of Coles (1957), only if it is viewed in relation to its own non-universal logarithmic law. To support the experimental observation of the pressure-gradient-dependence of logarithmic laws in sink flow TBLs, a theory based on the method of matched asymptotic expansions has been applied to sink flow TBLs and this theory reveals a systematic dependence of inner and outer logarithmic laws on the pressure gradient parameter ∆p. This dependence is essentially a higher-order effect and therefore becomes significant only in the presence of relatively strong pressure gradients. Comparison of the theory with the experimental data demonstrates that the disappearance of the universal logarithmic law in strong FPG situations does not necessarily imply the absence of classical inner-outer overlap region. The overlap may still manifest itself as a logarithmic functional form with constants that are strongly influenced by the magnitude of the FPG. An immediate use of the non-universal log laws is towards the estimation skin friction in strong-pressure-gradient equilibrium and near-equilibrium TBL flows and this issue has been studied in some detail. It is shown that the conventional Clauser-chart method for estimation of skin friction (which gives fairly accurate results for ZPG or mild-pressure-gradient flows), originally proposed by Clauser (1954), can be modified to deal with the situations involving strong streamwise pressure gradients, provided that the equilibrium or near-equilibrium TBL under consideration is not very close to relaminarization or separation. In such cases, the overlap layer manifests itself in the form of non-universal logarithmic laws that are dependent on the local strength of the pressure gradient. Using these non-universal log laws in conjunction with the measured pressure distribution (necessary for obtaining the acceleration parameter K) and a measured mean velocity profile, it is possible to obtain the local skin friction coefficient to an accuracy which is typical of skin friction measurements. This modified Clauser-chart method (MCCM) employs a two-fold iterative procedure (one iteration on Cf and the other on ∆p) in contrast to the conventional method that involves only one iteration (on Cf alone). As a by-product of this MCCM, one obtains the local pressure gradient parameter ∆p and the slope 1/κ and intercept C of the non-universal log law for that profile. It is also demonstrated that the arm´MCCM is quite robust to the changes in the universal values of K´arman constant κ0 and intercept C0 for the ZPG turbulent boundary layer. Various aspects of the large-scale structure in turbulent and reverse-transitional sink flow boundary layers subjected to streamwise FPGs have also been investigated. The use of sink flow configuration allows systematic characterization of the large-scale structure with the strength of the FPG as a parameter where the characterization is not contaminated by the upstream history effects. The large-scale structure is identified by cross-correlating the wall-shear stress fluctuation with the streamwise velocity fluctuation. The structure orientation is found to be linear over a large wall-normal extent typically extending from y/δ of 0.1 to 0.6. Beyond y/δ =0.6, the correlation under consideration becomes very weak to allow any conclusive results. The average structure inclination angle αavg is found to decrease systematically with increase in the streamwise FPG. This result is important and has implications towards modeling of the near-wall region. Further it is found that the structure gets elongated considerably as the FPG is increased, i.e. the streamwise spatial extent of the structure increases. Taken together, it is observed that the structure becomes flatter and longer with the increase in FPG. Structural models are proposed for sink flow TBLs in the form of either the shape of individual hairpin vortices or the possible structural self-organization. These models are then discussed in the light of present experimental results. It is also shown that the process of relaminarization of a TBL by strong FPG may be better appreciated by appealing to these structural models. The validity of Taylor’s hypothesis for structure angle measurements in the present study has been established experimentally. This exercise is important since the flows under consideration are highly accelerated and sometimes even reverse-transitional. In most of the previous work on the validity of Taylor’s hypothesis, at least for the measurements similar to the present work, the emphasis has been on ZPG turbulent boundary layers. The present exercise is therefore crucial for accelerating flows. Possible reasons for the observed validity of Taylor’s hypothesis have also been identified − specifically it is seen that the condition ∆xp/L << 1 needs to be met for Taylor’s hypothesis to be valid in pressure gradient flows. Investigation of the structure convection velocity from the space-time correlations has revealed that the convection velocity of a typical structure in the present sink flow boundary layers is almost equal to the local mean velocity (more than 90%). This implies that the structure gets convected downstream almost along with the mean flow. Near-wall ‘active’ and ‘inactive’ motions in sink flow TBLs have been studied, discussed and compared with the corresponding results for ZPG turbulent boundary layers from five different aspects: (i) turbulent diffusion of TKE, (ii) quadrant statistics, (iii) profiles of the streamwise turbulence intensity, (iv) event correlation length scales obtained from conditional sampling on the instantaneous flux signal and (v) profiles of the Townsend parameter Tp =(−uv) /u2. Near-wall inactive motion is seen to be related to the strength of the large-eddy structure in the outer region of TBL flow. For APG flows the near-wall inactive motion is known to be more intense (Bradshaw, 1967b) than the ZPG flows, say at the same K´arman number δ+. This observation is consistent with a stronger large-eddy structure that may be perceived from the stronger wake component in the mean velocity variation and the larger mean entrainment in an APG turbulent boundary layer as compared to the ZPG flow at same δ+. In sink flow TBLs, the large-eddy structure is much weaker in comparison to the ZPG flow at same δ+ which is consistent with the absence of wake component in the mean velocity profile as well as the zero mean entrainment into the layer. A sink flow TBL represents, a state of weakest large-eddy structure and hence minimum intensity of inactive motion compared to any other equilibrium or near-equilibrium TBL flow having the same K´arman number δ+. All the analysis of the relevant experimental data seems to support this.
19

Boundary layers and wind in turbulent thermal convection

Wagner, Sebastian 26 June 2014 (has links)
No description available.
20

Regime occupation and transition information obtained from observable meteorological state variables in the stably stratified nocturnal boundary layer

Abraham, Carsten 15 January 2019 (has links)
The stably stratified nocturnal boundary layer (SBL) can be classified into two distinct regimes: one with moderate to strong winds, weak stratification and mechanically sustained turbulence (wSBL) and the other one with moderate to weak wind conditions, strong stratification and collapsed turbulence (vSBL). With the help of a hidden Markov model (HMM) analysis of the three dimensional state variable space of stratification, mean wind speeds, and wind shear the SBL can be classified in these two regimes in both the Reynolds-averaged as well as turbulence state variables. The two-regime SBL is a generic structure at different tower sites around the world independent of the location specific conditions. Besides clustering the data the HMM analysis calculates the most likely regime occupation sequence which allows for detailed analysis of the structure of the meteorological state variables in conditions of very persistent nights. Conditioning on these very persistent nights clear influences of external drivers (such as pressure gradient force and low level cloud cover) are found. As the HMM analysis captures regime transitions accurately changes of state variables and external drivers across transitions can easily be assessed. Different meteorological state variables behave in times of turbulence collapse (wSBL to vSBL transition) and turbulence recovery (vSBL to wSBL transitions) as expected physically. The results reveal further that clear precursors for transitions in the state variable profiles or external drivers are cannot be determined and that on observed timescales regime transitions are relatively sharp. The absence of clear precursors suggests that parameterisations of SBL regime behaviour and turbulence in the two regimes in weather and climate models have to be stochastic. As regime statistics are relatively insensitive to changes in the stochastic properties of the HMM analysis observed regime statistics are compared to ’freely-running’ Markov chains. The SBL regime statistics do not follow a simple Markov process and more complex parameterisations are necessary. A possible approach of parameterising SBL regime behaviour stochastically using climatological results from this analysis is presented. / Graduate / 2019-12-17

Page generated in 0.063 seconds