Spelling suggestions: "subject:"bränslecellsbil"" "subject:"branslecellsbil""
1 |
Elbilar, en livscykelanalysav två alternativa tekniker : Bränslecellsbilar och batteribilarNordén, Simon January 2021 (has links)
In this thesis, two electric vehicles are compared, a fuel cellpowered vehicle and a battery powered vehicle with a conventionalvehicle with an internal combustion engine. The comparison wasdone as a life cycle assessment and consisted of two stages, avehicle stage and a fuel stage. The vehicle stage consisted ofeverything from mining minerals to recycling of the vehicles,every aspect that’s connected to the car. The fuel stage consistedof fuel production and use during the vehicle’s lifetime. The fuelconsist of electricity and hydrogen produced through electrolysis. The goal of the thesis was to understand what aspects of thelifecycle matters most in terms greenhouse gases for each of theelectric vehicles. Since there are no emissions in terms ofgreenhouse gases while driving the electric vehicles, only fuelproduction, electricity and hydrogen through electrolysis, countedtowards the fuel stage. For the vehicle with an internalcombustion engine the fuel stage consisted of gasoline productionand emissions from driving. The results showed that when comparing electric vehicles withinternal combustion vehicles, the most important aspect was theelectricity mix, with a Nordic electricity mix for most use casesthe electric vehicles where more climate friendly then theinternal combustion vehicles. The fuel cell powered vehicle usedmore electricity than the battery powered vehicle when usingelectrolysis to create hydrogen, and therefore was more sensitiveto increases in emissions from the electricity mix. When comparingthe vehicle stage, battery production causes the most emissionsfor the battery powered vehicle and the hydrogen tank caused themost emissions for the fuel cell powered vehicle.
|
2 |
Framtidens hållbara elbilskoncept : En jämförande LCA-studie mellan en elbil och en bränslecellsbilUlin, Sofia, Wiebert, Julia January 2015 (has links)
Transportsektorn så som den ser ut i dagens samhälle är inte hållbar då den står för ungefär 30 % av Sveriges totala utsläpp av koldioxid. Detta beror framför allt på att fossila bränslen utgör det främsta drivmedlet inom transportsektorn, och alternativa lösningar måste därför undersökas. Två sådana alternativ är elbilar och bränslecellsbilar. För att ta reda på vilket av dessa elbilskoncept som har störst möjlighet att skapa en utsläppsfri transportsektor har livscykelanalyser genomförts för att jämföra de olika bilmodellerna ur ett livscykelperspektiv. De två bilmodeller som betraktas i studien är elbilen Tesla Model S och bränslecellsbilen Hyundai ix35 Fuel Cell. Analysen omfattar produktionen av de för bilmodellernas specifika komponenter, vilket för elbilen är batteriet och för bränslecellsbilen bränslecellen, vätgastankarna och batteriet, samt användningsfasen där även produktion av bränsle ingår. Distribution och återvinning av bilmodellerna har uteslutits ur denna studie. För genomförandet av livscykelanalyserna har programvaran SimaPro 7 som ger tillgång till ett stort antal databaser använts. Resultatet av studien visar att bränslecellsbilen har en lägre klimatpåverkan än en elbil sett ur ett livscykelperspektiv, med antagandet att vätgasen produceras med vattenkraftsproducerad el. Dock finns det en del osäkerheter i studien så som val av bilmodeller, material och processer vid produktionsfasen som kan ha påverkat resultatet. För att minska eventuella osäkerheter i beräkningarna undersöktes ytterligare två scenarion; ett där vätgasen som används i bränslecellsbilen producerats med en genomsnittlig svensk elproduktion och ett där ett mindre batteri användes i elbilen. Enligt resultatet av det första scenariot är bränslecellsbilen även då det bästa alternativet ur miljösynpunkt, medan elbilen skulle vara ett bättre alternativ om storleken på batteriet var mindre. Avslutningsvis kan konstateras att den största klimatpåverkan för de båda elbilskoncepten sker under produktionsfasen. Särskilt utmärkande är detta för elbilen, medan bränslecellsbilen har en högre klimatpåverkan under användningsfasen. Oavsett vilket av de undersökta elbilskoncepten som används kommer Sveriges transportsektor inte kunna bli koldioxidneutral inom den närmsta framtiden, och det är även svårt att avgöra vilket av koncepten som lämpar sig bäst för användning i större skala i en framtida svensk transportsektor. / The transport sector in today’s society is not sustainable since it contributes to about 30% of Sweden’s total greenhouse gas emissions. This is mainly due to the fact that the primary fuels used in the transport sector are fossil fuels. Therefore, alternative solutions must be investigated. Two such options that will be investigated in this report are battery electric vehicles and fuel cell vehicles. To find out which of these would have a greater possibility to create a zero-emission transport sector, the vehicles have been compared from a life cycle perspective by the performance of a life cycle assessment. The investigated vehicle models are the battery electric vehicle Tesla Model S and the fuel cell vehicle Hyundai ix35 Fuel Cell. The assessment includes production of the specific components for each vehicle, which are defined as the battery in the battery electric vehicle and the fuel cell, hydrogen tanks and battery in the fuel cell vehicle, along with the use phase and production of the fuel. Distribution and recycling of the vehicles have been excluded from the study. The software SimaPro 7, which gives access to several life cycle inventory databases, was used when performing the life cycle assessments. According to the result of the study, fuel cell vehicles have a lower impact on the climate than battery electric vehicles from a life cycle perspective, if the hydrogen is produced using hydroelectric energy. However, a number of uncertainties such as differences in the chosen vehicle models, and assumptions made regarding the materials and processes used in the production phase of the vehicles could have affected the result. Two additional scenarios were investigated to decrease these uncertainties; one where the hydrogen used in the fuel cell vehicle was produced using an average Swedish electricity production and one where a smaller size of the battery in the battery electric vehicle was used. In the first scenario, the fuel cell vehicle would still be the better option, but in the scenario where a smaller size of the battery was used, the battery electric vehicle would be the option with the lowest impact on the climate. It can be concluded that the greater part of the climate impact from the two vehicle concepts occurs during the production phase, particularly for the battery electric vehicle. The fuel cell vehicle, on the other hand, has a greater impact on the climate during the use phase. Regardless of which of the investigated electric vehicle concepts is used, it is not possible for the Swedish transport sector to become climate neutral within the near future, and it is also difficult to determine which concept would be more suitable for a large-scale usage in the future Swedish transport sector.
|
Page generated in 0.0429 seconds